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Prologue I

In an old paper, 22 years ago, we studied Hensel lifts of BCH
cyclic F2−codes in primitive length 2m − 1
In recent years we started to study cyclic Z4−codes in lengths
2m−1
N .

We Hensel lifted other classical binary cyclic codes like

Melas code

Zetterberg code

irreducible cyclic codes

We found an algebraic decoding for the first two and constructed
low correlation sequences from the last ones.



Prologue II

We also studied Z4−valued Boolean functions esp. bent functions.

P. Solé, N. Tokareva, Connection between quaternary and
binary bent functions iacr.eprint.org

M.Shi, L. Sok, P. Solé, Classification and construction of
quaternary self-dual bent functions, SETA 2016, submitted



Announcement

Inscriptions are open for CIMPA School
on
QUASI-CYCLIC and Related ALGEBRAIC CODES,

Ankara, Turkey, September 11 to 22, 2017 . Speakers include

Buket Ozkaya : Generalized quasi-cyclic codes

San Ling : linear quasi-cyclic codes over finite fields

Joachim Rosenthal : convolutional codes and quasi-cyclic
codes

Roxana Smarandache : LDPC codes

Olfa Yemen : cyclic codes leading to the notion of skew-cyclic
codes

Travel grants and accomodation grants possible.



Irreducible cyclic codes

In the present work we lift the binary irreducible cyclic codes to
Z4− codes.
We give upper and lower bounds on the largest non-trivial
correlation of their allied sequences.
As a by product we give a short proof of a claim of McEliece on
the sequences of irreducible binary cyclic codes.



Irreducible cyclic binary codes

A binary cyclic code C of length n is irreducible if its parity-check
polynomial is irreducible over GF (2).
Trivial example : If n = 2m − 1 is primitive then C is the dual of

the Hamming code. Attached sequences are M-sequences.
if n = 2m−1

N , for some odd integer N > 1 then



Notation

Let m be an integer ≥ 2, and denote by GR(4m) the Galois ring
of characteristic 4 and 4m elements,
and by GR(4m)×, its multiplicative group.
Let q = 2m, and let N be an odd integer that divides q − 1. We
consider an irreducible cyclic Z4−code CN of length n = q−1

N .
Its parity-check polynomial H(x) is the minimal polynomial in
Z4[x ] of β := γN , with γ an element of order q − 1 of GR(4m)×.
It can be shown that CN is determined, up to monomial
equivalence, by the multiplicative order of β in GR(4m)×.



proof of equivalence statement

Recall that two cyclic codes are multiplier equivalent if there is an
invertible element M ∈ Zn such that such that the coordinate
index permutation x 7→ Mx maps one on the other.
Claim : Codes CN corresponding to β of the same order in
GR(4)× are multiplier equivalent.
If a, b are elements of GR(4m)× of the same order then there is
M ∈ Z×n such that b = aM .
If a = γr , and b = γs then the orders of a and b in GR(4m)×, are,
respectively, q−1

(q−1,r) and q−1
(q−1,s) .

By hypothesis we infer that (q − 1, r) = (q − 1, s) = δ, say. Let
r = δr ′ and s = δs ′. Thus both r ′ and s ′ are coprime with q − 1,
hence invertible modulo n. Putting M = r ′

s′ we see that M is
invertible modulo n and that r = Ms modulo q − 1 hence modulo
n, a divisor of q − 1.



Trace expression

As usual the Teichmüller set T is defined by

T = {0, 1, γ, γ2, · · · , γq−2},

and
T ∗ = {1, γ, γ2, · · · , γq−2}.

Define, for a ∈ GR(4m) the evaluation vector Ev(a) by the formula

Ev(a) = (Tr(a),Tr(aβ), · · · ,Tr(aβn−1)).

The code CN can be explicitly given as

CN = {Ev(a)| a ∈ GR(4m)}.

where Tr is the trace from GR(4m) down to Z4. In particular
N = 1 is the celebrated quaternary Kerdock code.
Its sequences were explored in 1992 by Kumar et al.



Residue code

We will denote by µ the reduction modulo 2 in Z4, which
extends componentwise to Zn

4.
In particular we let BN = µ(CN), and observe that

BN = {ev(a)| a ∈ GF (2m)}.

where
ev(a) = (tr(a), tr(aµ(β)), · · · , tr(aµ(β)n−1))

and tr(z) is the usual trace from GF (2m) down to GF (2).
The code BN is an irreducible binary cyclic code like in McEliece
works.



Correlation

The complex correlation Θa attached to the generic codeword
Ev(a) of CN is

Θa =
n−1∑
j=0

iTr(aβ
j ),

where i is the complex fourth root of one. The (real) correlation θa
attached to the generic codeword ev(a) of BN is

θa =
n−1∑
j=0

(−1)tr(aµ(β)
j )

.



Sequences families

Consider a family S = {s1, · · · , sK}, of K sequences with
si = (si (t))L−1t=0 for 1 ≤ i ≤ K} ,
each sequence of length L taking its values over Zr .
Let Ω be a primitive complex r th root of unity .
The correlation function between the i th and the j th sequences is
defined by θij(τ) =

∑L−1
t=0 Ωsi (t⊕τ)−sj (t); 0 ≤ τ ≤ L− 1, where ⊕

means addition ( (mod L)).



Maximum Correlation I

Consider the maximum nontrivial correlation for complex
sequences.

θmax(S) = max{| θij(τ) |: 1 ≤ i , j ≤ K , 0 ≤ τ ≤ L− 1,

i 6= j if τ = 0}.



Maximum Correlation II

We may deal with this problem also in the following way. Let
C = {c i = (ci (t))L−1t=0 : 1 ≤ i ≤ KL := M} be the set of the
elements of S and their cyclic shifts (thus C might contain
repeated elements).
Denote

∑L−1
t=0 ω

ci (t)−cj (t) by < c i , c j > .
Then we denote by θ(C ) the quantity

θmax(S) = max{| < c i , c j > | : 1 ≤ i , j ≤ M, i 6= j}.

We say that C is an (L,M, θ) code if its length is L and its
cardinality is M, and if θ(C ) is less than or equal to θ.



Welch bound

The Welch bound on families of M
L pairwise cyclically inequivalent

complex sequences of period L and maximum non-trivial
correlation Θ is under the form :

|Θ|2 ≥ L(M − L)

M − 1
.

Lower bounds on the performance of the binary and quaternary
sequences in this article follow then.
Open Problem : Can we use deeper bounds like Tietaivainen’s or
Levenshtein’s ?



Lower bounds on maximum correlation

The largest non-trivial correlation attached to the code CN is, in
module, at least

|θ(CN)|2 ≥ 4m − n

N(2m + 1)
.

Note that the square root of the RHS is asymptotically equivalent

to
√

2m

N for fixed N and large m. The largest non-trivial correlation

attached to the code BN is, in module, at least

|θ(BN)|2 ≥ 2m − n

N
.

Note that the square root of the RHS is asymptotically equivalent

to

√
2m(N−1)

N for fixed N and large m.



Gauss sums over Galois rings

Define a multiplicative character of order N say χ by the formula
χ(γj) = ωj , where

ω is a primitive complex root of unity of order N

j is an integer in the range 0 ≤ j ≤ q − 2.

Note that χ is a character of the quotient group 〈γ〉/〈β〉.
Define the Gauss sums (trivial incomplete in the sense of
Langevin-Solé)

Gj(a) =
∑
x∈T∗

iTr(ax)χj(x),

for a ∈ GR(4m). The classical Gauss sums are then
Gj(2) =

∑
x∈T∗(−1)tr(µ(x))χj(x).



Character sums and correlation

We have

Θa =
1

N

N−1∑
j=0

Gj(a).

If a = A(1 + 2u) with A ∈ T ∗ and u ∈ T is a unit then

Θa =
1

N

N−1∑
j=0

Gj(1 + 2u)χ−j(A).

If a is a nonzero non unit say a = 2α, with α ∈ T ∗ then

Θa =
1

N

N−1∑
j=0

Gj(2)χ(α)−j .



McEliece’s claim (1980)

The cyclic code BN has an associated family of binary sequences
with maximum non-trivial correlation at most 2

m
2 .

It follows from the above formula with the classical evaluation of
the modulus of Gauss sums over finite fields

|Gj(2)| =
√
q,

for 0 < j ≤ N − 1.
Note that G0(2) = −1, by orthogonality of additive characters of
Fq.



Upper bound on the max correlation

We give an upper bound on Θa based on the general results of
Shanbagh, Kumar, Helleseth, which are based in turn on Weil
bounds for number of points of algebraic curves on finite fields.
For a ∈ GR(4m)×, we have

| 1 + NΘa |≤ (2N − 1)
√

2m.

This comes from the bound on the character sum
∑

t∈T iTr(af (t)),
with f (t) = tN , that is

|
∑
t∈T

iTr(af (t))| ≤ (2N − 1)
√

2m.

Note that the preceding bound on the correlation is asymptotically
equivalent to 2N−1

N

√
2m, for large m and fixed N.



Explicit expression of the correlation

With the above notation, denoting by an overbar the complex
conjugation, we have

|Gj(1)|2 = (2m − 1) + (1− i)m
∑

z∈T∗∗
χ2j(z)iTr(

z
1+z

).

Here
T ∗∗ = T ∗ \ 1 = {γ, γ2, · · · , γq−2}.

Open Problem : Compute the sum in the RHS explicitly, at least
in some special cases.



Conclusion for binary sequences

In this article we have constructed based on binary irreducible
cyclic codes BN a family of binary sequences with θmax in the range√

2m(N − 1)

N
≤| θ(BN) |≤

√
2m,

the lower bound being asymptotic on m, for fixed N.
The period is L = 2m−1

N and the number of cyclically non
equivalent sequences is N.
We conjecture, based on our numerical data, that, for large m,
the value of θmax is closer to the lower than to the upper bound.



Conclusion for quaternary sequences

We also constructed based on quaternary irreducible cyclic codes a
family of quaternary sequences with Θmax in the range√

2m

N
≤| θ(CN) |≤ 2N − 1

N

√
2m,

the bounds being asymptotic on m, for fixed N.
The period is L = 2m−1

N and the number of cyclically inequivalent
sequences is N(2m + 1).
We conjecture , based on our numerical data, that, for large m,
the value of θmax is closer to the upper than to the lower bound.



Classical Boolean functions

A Boolean function in n variables is any function from Fn
2 to F2.

The set of all 22
n

such functions is denoted by Bn.
The sign function of f is defined as F (x) = (−1)f (x).
The Walsh-Hadamard Transform (WHT) is defined as
Wf (u) =

∑
x∈Fn

2
(−1)x .uF (x).

The matrix of the WHT is the Hadamard matrix Hn of Sylvester
type, Let

H :=

(
1 1
1 −1

)
.

Let Hn := H⊗n be the n-fold tensor product of H with itself. Recall
the Hadamard property

HnH
T
n = 2nI2n ,

where we denote by IM the M by M identity matrix. With these
notations, Wf (u) = HnF .



Classical bent functions

A function f ∈ Bn, is said to be bent if Wf (u) = ±2n/2 for all
u ∈ Fn

2.
Only exist for even n.
If f is bent, its dual function is defined as that element f̂ of Bn
such that its sign function, henceforth denoted by F̃ , satisfies
F̃ = Wf (u)

2n .

If, furthermore, f = f̂ , then f is self-dual bent . Similarly, if
f = f̂ + 1 then f is anti self-dual bent . Thus if f is self-dual
bent, its sign function is an eigenvector of Hn associated to the
eigenvalue 2n/2.
If f is anti self-dual bent, its sign function is an eigenvector of Hn

associated to the eigenvalue −2n/2.



Z4−bent functions

A generalized Boolean function in n variables is any function
from Fn

2 to Zq, for some integer q. For q = 4, the set of all such
functions will be denoted by Qn.
The (complex) sign function of f is defined as F (x) = (i)f (x).
The quaternary Walsh-Hadamard transform Hf (u) of the
Boolean function f , is defined as Hf (u) =

∑
x∈Fn

2
(−1)x ·uF (x).

In matrix terms Hf (u) = HnF . A function f ∈ Qn, is said to be
bent if |Hf (u)| = 2n/2 for all u ∈ Fn

2. A bent quaternary function

is said to be regular if there is an element f̂ of Qn, such that its
sign function satisfies Hf (u) = 2n/2F̃ . If, furthermore, f = f̂ , then
f is self-dual bent. Similarly, if f = f̂ + 2 then f is anti self-dual
bent.



Z4−Reed-Mueller codes

There are two quaternary generalizations of Reed-Mueller codes in
Hammons et al.
The codes QRM(r ,m) are obtained by Hensel lifting from the
binary Reed-Mueller codes.
The codes ZRM(r ,m) are obtained by a multilevel construction
from the RM codes. Symbolically,
ZRM(r ,m) = RM(r − 1,m) + 2RM(r ,m).
We require a third one, introduced in Davis and Jedwab.
Consider codes of length 2m, generated by evaluations of
quaternary Boolean functions on the 2m points of Fm

2 . The code
RM4(r ,m) is generated by the monomials of order at most r . It

contains 4
∑r

j=0 (mj ) codewords and has both Hamming and Lee
distance equal to 2m−r

As pointed out in Borges et al. (2008),
RM4(r ,m) = ZRM(r + 1,m), for r ≤ m − 1.



Pairs of SD Boolean functions vs SD Z4−Boolean functions

Assume F = a + bi is the sign function of a quaternary self-dual
bent function, with a, b reals. There is a pair of binary self-dual
bent functions given by their sign functions G ,H as

G = a + b,

K = a− b.

Conversely, every pair G ,H of binary self-dual bent functions
produces a quaternary self-dual bent function in that way.
⇒ There is no self-dual or anti-self-dual bent quaternary Boolean
function in odd number of variables.



Pairs of regular bent functions vs regular Z4−bent functions

Assume F = a + bi is the sign function of a regular quaternary
bent function, with a, b reals. There is a pair of binary bent
functions g , k given by their sign functions G ,H as

G = a + b,

K = a− b.

Conversely, every pair g , k of binary bent functions produces a
regular quaternary bent function in that way.
⇒There is no regular bent quaternary Boolean function in odd
number of variables.



Spectral characterization

We use the notation † to denote the transconjugate of a complex
valued matrix. Define the Rayleigh quotient attached to a
complex sign function F , viewed as a column vector of length 2n,
by

R(F ) :=
F †HnF

F †F
.

For f ∈ Qn, of sign function F , we have

−2n/2 ≤ R(F ) ≤ 2n/2,

with equality in the second (resp. first) iff f is self-dual (resp. anti
self-dual).



Spectral characterization : Proof

Since Hn is real symmetric, we can apply the general theory of the
Rayleigh quotient of hermitian matrices.
The spectrum of Hn consists of the two eigenvalues ±2n/2, with
two orthogonal eigenspaces, each of dimension 2n−1.
Let F+ (resp. F−) be the projection of F on the eigenspace
attached to 2n/2 (resp. −2n/2).
Reporting in the definition of R(F ) we get

R(F ) = 2n/2
|F+|2 − |F−|2

|F+|2 + |F−|2
,

yielding the bounds

−2n/2 ≤ R(F ) ≤ 2n/2,

where the first (resp. second) inequality is met iff F+ = 0 (resp. iff
F− = 0).



Maiorana-McFarland type

A general class of quaternary bent functions is the following
quaternary analogue of the so-called Maiorana-McFarland class.
Consider all functions of the form

2x · φ(y) + g(y)

with x , y dimension n/2 variable vectors, φ any permutation in

Fn/2
2 , and g arbitrary quaternary Boolean. In the following

theorem, we consider the case where φ ∈ GL(n/2, 2).
A Maiorana-McFarland function is self-dual bent (resp. anti
self-dual bent) if g(y) = b · y + ε and φ(y) = L(y) + a where L is
a linear automorphism satisfying L× Lt = In/2, a = L(b), and a
has even (resp. odd) Hamming weight.
The code of parity check matrix (In/2, L) is self-dual and (a, b) one
of its codewords. Conversely, to the ordered pair (H, c) of a parity
check matrix H of a self-dual code of length n and one of its
codewords c can be attached such a Boolean function.



Dillon function type

As usual, make the convention that 1
0 = 0.

Assume G0 and G1 to be balanced Boolean function of m variables,
with G0(0) = G1(0) = 0, and satisfying

∑
t∈F2m

iG0(t)+2G1(t) = 0.
The quaternary Boolean function f in 2m variables defined by

f (x , y) = G0(x/y) + 2G1(x/y)

is gbent with dual

f̂ (x , y) = G0(y/x) + 2G1(y/x).



Symmetries

In this section we derive the orbits of self-dual quaternary bent
functions under the orthogonal group . Define, following Janusz,
the orthogonal group of index n over F2 as

On := {L ∈ GL(n, 2) | LLt = In}.

Observe that L ∈ On if and only if (In, L) is the generator matrix of
a self-dual binary code of length 2n.
The next result shows that Qn is indeed wholly invariant under the
group On.
Let f denote a self-dual bent function in n variables.
If L ∈ On and c ∈ Z4 then f (Lx) + c is self-dual bent.



Algorithms

Theorem Let n ≥ 2 be an even integer and Z be arbitrary in
{±1,±i}2n−1

. Define Y := Z + 2Hn−1

2n/2
Z . If Y is in {±1,±i}2n−1

,
then the vector (Y ,Z ) is the sign function of a self-dual bent
function in n variables. Moreover all self-dual bent functions
respect this decomposition.
There is a search algorithm for sign functions of self-dual
quaternary Boolean functions, called SDB(n, k) based on the
above theorem, to compute all self dual quaternary bent Boolean
function of degree at most k in n variables, and an analogous
algorithm, called ASDB(n, k) for quaternary anti-self-dual bent
Boolean function in n variables, of degree at most k .



Complexity

Algorithm SDB(n, k)

1 Generate all Z = iz with z in RM4(k , n − 1).

2 Compute all Y as Y := Z + 2Hn−1

2n/2
Z .

3 If Y ∈ {±1,±i}2n−1
output (Y ,Z ), else go to next Z .

To show the memory space savings with comparison with the brute
force exhaustive search of complexity 22

n
, the search space is only

of the size of the Reed-Muller code that is 22(
∑k

j=0 (n−1
j )).

Algorithm ASDB(n, k)

1 Generate all Z = iz with z in RM4(k , n − 1).

2 Compute all Y as Y := Z − 2Hn−1

2n/2
Z .

3 If Y ∈ {±1,±i}2n−1
output (Y ,Z ), else go to next Z .



Numerics

We classify quaternary self-dual bent functions under the
extended orthogonal group. Recall that two n−variable functions
f and f ′ are equivalent if for any x ∈ Fn

2, f
′(x) = f (Lx) + c for

some L ∈ On, c ∈ Z4.
We give the complete classification for all the functions in two and
four variables,
the Gray image (the ordered pair (g , k) above) of their equivalence
classes
and the classification of all quadratic functions in six variables .
In accordance with our theory, the total number of quaternary
self-dual bent functions is the square of that of self-dual bent
functions in Carlet et al., namely 22 in the case of two variables,
and 202 in the case of four variables.


