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Background: MLD and DistVer (finding MinDist) for linear [n, k]-codes.

A. MLD is NP-hard (Berlecamp-McEliece-van Tilborg 1978)

B. DistVer is NP-hard (Vardy 1991)

C. DistApprox is NP-hard within a const factor or a linear additive error

(Dumer-Micciancio-Sudan 1999 - RP reductions; Cheng-Wan 2009)

• Algorithms: for generic [n, k]-codes of rate R, DistVer and MLD

require expon. complexity 2F(R)n. We discuss 3 algorithms:

Algorithm 1: Correct sliding k-window of an average weight (SW)

Algorithm 2: Bipartition into halves and match syndromes (MB)

Algorithm 3: Find and encode an error-free covering k-set (CS)

• Results for LDPC codes

All three algorithms carry over to LDPC codes;

All reduce DistVer complexity 2F(R)n of linear codes

Larger reductions hold for the Gallager’s ensemble.
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Exponents F(R) for linear codes and LDPC (`,m)-codes of rate R = k/n = 1− `/m
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Theorem. Let some ensemble of linear codes have length n→∞, distance δn,
and relative erasure-correcting threshold ρ = ρ(R). Then codewords of weight δn
can be found with complexity exponents as follows:

Codes on GV bound R = 1− h(δGV) Any ensemble with δ and ρ
b: FSW = R(1− R) FSW = (1−ρ)h(δ)
c: FMB = (1− R)/2 FMB = h(δ)/2
g: FCS = (1− R)(1− h[δGV /(1− R)] FCS = h(δ)−ρh(δ/ρ)
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Sliding window (SW) technique for linear codes (Evseev 1983):

Any linear code C gives Perror (C) < 2PML(C), by correcting δGV errors.

Note: Most LC have covering radius δGV(1 + ε) (Blinovskii 1987).

Algorithm. Take any SW L of length s ∼ k + 2 log n in [n, k] code.

Codeword e of weight d gives vector eL of weight v ∼ dR in some L.

_ _ _ _ _
eL︷ ︸︸ ︷_ _ _ _︸ ︷︷ ︸

SW window L

_ e _ _ _ _ _ _ n

Take d = 1, 2, ... Run n
(s

v

)
encoding trials for all eL. STOP

if encoded vector e has weight d. Then F = R(1− R).

A. Algorithm works for all cyclic codes and most long linear codes.

B. For most linear codes, we can uniquely encode all n SWs on

length s = k + o(n). Equivalently, we correct n− s erasures.

C. For LDPC codes, s/k > 1. We increase s to get unique encoding.
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Matched Bipartition (MB) technique (Dumer, Stern; 1986∗ - 1989∗∗)
∗ MB works for any linear code and has the lowest exponent as R→ 1.
∗∗ Combined with Covering Sets, MB reduces exponent FCS for all R.

Algorithm. Take two disjoint n/2-windows L1 and L2. Some partition L1, L2

decouples any vector e of weight d = 1, 2, ... into vectors e1 and e2 of wt ∼ d/2.

_ _ _ _ e1_ __ _︸ ︷︷ ︸
n/2-window L1

_ _ _ _ e2_ __ _︸ ︷︷ ︸
n/2-window L2

Lists {e1} and {e2} have size M ∼
(n/2

d/2

)
for any linear [n, k] code.

Calculate syndromes h(e1) and h(e2) for each e1 and e2.

Sort the list {e1}∪ {e2} to find e1, e2 with h(e1) = h(e2).

Output a codeword c = (e1, e2) if it exists and STOP.

Matching of {e1} and {e2} requires ∼ M log2 M ∼ 2nh(δ)/2 ∼ 2n(1−R)/2

operations for classical codes on GV bound.
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Covering Sets (Prange, Leon, Kruk, Coffey-Goodman..., 1962-1990)

A set J of θn positions is τ -deficient in code C[n, k] if the generator

submatrix G[n]\J has rank k − τ. Then shortened code CJ has size 2τ

and erasure set J can be restored into some code list MJ of size 2τ(J ).

Theorem: for most linear codes, all (n− k)-sets J have τ ≤
√

2n.

ML decoding. Use [n, n− k, d] covering of size L ∼ (n ln n)
(n

d

)
/
(n−k

d

)
.

Some (n− k) set J covers error e of weight d with probability 1− e−n ln n.

Recover a code list MJ from erasure set J and find the closest codeword.

Let codes CJ \ 0 of length θn have average size Nθ (over codes C ∈ C and

sets J ). The erasure threshold is ρ if Nθ → 0 for θ < ρ and Nθ ≥ 1, θ > ρ.

Lemma 1: Most codes C ∈ C correct most erasure sets J if Nθ → 0.
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Lemma 2: Nθ =
∑θn
τ=0 (2

τ − 1)αθ(τ), where αθ(τ) is the fraction of τ -def.

θn-sets J in codes C ∈ C. Most codes C have ≤ 2−τ fraction of τ -def. ρn-sets.

ML complexity (per trial). We need one Gaussian elimination and 2τ vector

add-s to recover τ -def. erasure set J . This has complexity Dθ(J ) ≤ n3 + n2τ .

Recover θn-sets with ave. complexity Dθ ≤
∑θn
τ=0(n

3 + n2τ )αθ(τ) = nNθ + n3.

If Nθ → 0, only ≤ 1/n of codes C have complexity D ≥ n4L over L trials.

DistVer (per trial). To cover any codeword c 6= 0 of weight d with sets J , we

take J with τ (J ) ≥ 1. Again Dθ ≤
∑θn
τ=1[n(2

τ − 1) + n3]αθ(τ) < nNθ + n3.

From generic to LDPC codes. We use two general decoupled procedures,

ρn-erasure recovery and δn-covering sets. Parameters δ and ρ give the no.

of trials L and complexity exponent FCS = (log2 L) n ∼ h(δ)−ρh(δ/ρ).
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Parameters of two LDPC ensembles: Gallager 1963, Litsyn-Shevelev 2002

1. Ensemble A(`,m) : all p.-check r × n matrices H with column weight

` and row weight m = `n/r. Code rate R = 1− α, where α = `/m.

2. Ensemble B(`,m) : H consists of ` horizontal blocks H1, ...,H`. Block

H1 includes m consecutive unit matrices of size r
`
× r

`
. Any other block

Hi is some random permutation πi(n) of n columns of H1. Ensembles

A(`,m) and B(`,m) have the best LDPC spectra known to date.

3. For any β ∈ [0, 1], let t > 0 be the (single) root of the equation

(1 + t)m−1 + (1− t)m−1

(1 + t)m + (1− t)m = 1− β and q (β) = α log2
(1 + t)m + (1− t)m

2tβm − αmh(β).

Lemma∗: A vector of weight βn belongs to some code C of A,B(`,m)

with probability � 2−nq(β). There are on average Nθ � 2−nf (θ) nonzero

vectors on any set J of size θn, where f (θ) = max0<β≤1 {q (βθ) + θh(β)} .

Distance δ and threshold ρ are the roots of : h(δ) + q(δ) = 0, f (ρ) = 0.
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Summary for LDPC codes and improvements for the Gallager’s ensemble

LDPC codes reduce both the distance δ and erasure threshold ρ of linear codes.

The former factor prevails and reduces FCS = h(δ)− ρh(δ/ρ). This design holds

for any (ir)regular LDPC or other ensemble with the known δ and ρ. However,

we increase FCS if we need to correct δVG errors in MLD.

FCS can be reduced for the Gallager’s ensemble B(`,m). Here the first∗

n/m parity checks have disjoint supports Ji of length m. They represent

code B(1,m) with all-even weight (AE) m-blocks on each Ji. We use AE

m-blocks of total w-t θn to cover AE m-blocks of total w-t δn, and say

that vectors of w-t θn form a Code-covering B(θ, δ) in B(1,m).∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 | |
| 1 1 1 1 1 |
| | 1 1 1 1 1

− − − − − | − − − − − | − − − − −
? ? | ? ? | ? ? err
• • • • | • • | • • cov

∣∣∣∣∣∣∣∣∣∣∣∣
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Let a codeword c leave si parity checks with i = 0, 2, ... free positions.

There are only NS < (n/m)m possible spectra S = {s0, s2, ..., sm}.

However, covering size of B(θ, δ) depends on spectra S.

Example. Code B(1, 8), n = 16, δn = 8, θn = 12.

H =

∣∣∣∣1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

∣∣∣∣
A. _ _ _ _ _ _ _ _︸ ︷︷ ︸

4 free pos.

_ _ _ _ _ _ _ _︸ ︷︷ ︸
4 free pos.

B. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _︸ ︷︷ ︸
8 free pos.

C. _ _ _ _ _ _ _ _︸ ︷︷ ︸
2 free pos.

_ _ _ _ _ _ _ _︸ ︷︷ ︸
6 free pos.

A. s4 = 2, sother = 0, |B(θ, δ)| =
(4

2

)
·
(4

2

)
+ 2 ·

(4
4

)
·
(4

0

)
= 38

B. s8 = 1, sother = 0, |B(θ, δ)| =
(8

4

)
= 70

C. s2 = 1, s6 = 1, sother = 0, |B(θ, δ)| =
(2

2

)
·
(6

2

)
+
(2

0

)
·
(6

4

)
= 30
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Given S = {s0, s2, ..., sm}, cover cS of w-t δn with AE vectors b = (cS, b′) of

w-t θn. Here AE vector b′ have w-t θn− δn on the rest n− δn positions.

Let N (θ) and NS(θ, δ) be the number of AE vectors b and b′.

Theorem. Covering B(θ, δ) has expon. size LS(θ, δ) - N (θ) / minS NS(θ, δ).

For m→∞, the number LS(θ, δ) has the same order as the order

L(θ, δ) ∼
( n
δn

)
/
(n−θn
δn

)
of generic (non-coding) covering T(n, θn, δn).

For finite m, LS(θ, δ) reduces the order of L(θ, δ).
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