Distance verification for LDPC codes

Ilya Dumer UC Riverside, USA

э

イロン イヨン イヨン イヨン

Background: MLD and DistVer (finding MinDist) for linear [n, k]-codes.

- A. MLD is NP-hard (Berlecamp-McEliece-van Tilborg 1978)
- B. DistVer is NP-hard (Vardy 1991)
- C. DistApprox is NP-hard within a const factor or a linear additive error (Dumer-Micciancio-Sudan 1999 - RP reductions; Cheng-Wan 2009)
- Algorithms: for generic [*n*, *k*]-codes of rate *R*, DistVer and MLD require expon. complexity 2^{*F*(*R*)*n*}. We discuss 3 algorithms:

Algorithm 1: Correct sliding *k*-window of an average weight (SW) Algorithm 2: Bipartition into halves and match syndromes (MB) Algorithm 3: Find and encode an error-free covering *k*-set (CS)

• Results for LDPC codes

All three algorithms carry over to LDPC codes; All reduce DistVer complexity $2^{F(R)n}$ of linear codes Larger reductions hold for the Gallager's ensemble.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponents F(R) for linear codes and LDPC (ℓ, m) -codes of rate $R = k/n = 1 - \ell/m$

Theorem. Let some ensemble of linear codes have length $n \to \infty$, distance δn , and relative erasure-correcting threshold $\rho = \rho(R)$. Then codewords of weight δn can be found with complexity exponents as follows:

Codes on GV bound $R = 1 - h(\delta_{GV})$	Any ensemble with δ and ρ
b: $F_{SW} = R(1-R)$	$F_{SW} = (1 - \rho)h(\delta)$
C: $F_{MB} = (1 - R)/2$	$F_{MB} = h(\delta)/2$
g: $F_{CS} = (1-R)(1-h[\delta_{GV}/(1-R)])$	$F_{CS} = h(\delta) - \rho h(\delta/\rho)$

Sliding window (SW) technique for linear codes (Evseev 1983):

Any linear code *C* gives $P_{error}(C) < 2P_{ML}(C)$, by correcting δ_{GV} errors.

Note: Most LC have covering radius $\delta_{GV}(1 + \varepsilon)$ (Blinovskii 1987).

Algorithm. Take any SW \mathcal{L} of length $s \sim k + 2 \log n$ in [n, k] code.

Codeword **e** of weight *d* gives vector $\mathbf{e}_{\mathcal{L}}$ of weight $v \sim dR$ in some \mathcal{L} .

Take $d = 1, 2, ... \operatorname{Run} n{s \choose v}$ encoding trials for all $\mathbf{e}_{\mathcal{L}}$. STOP if encoded vector \mathbf{e} has weight d. Then F = R(1 - R).

- A. Algorithm works for all cyclic codes and most long linear codes.
- B. For most linear codes, we can uniquely encode all *n* SWs on length s = k + o(n). Equivalently, we correct n s erasures.
- C. For LDPC codes, s/k > 1. We increase s to get unique encoding.

Matched Bipartition (MB) technique (Dumer, Stern; 1986* - 1989**)

- * MB works for any linear code and has the lowest exponent as $R \rightarrow 1$.
- ** Combined with Covering Sets, MB reduces exponent F_{CS} for all R.

Algorithm. Take two disjoint n/2-windows \mathcal{L}_1 and \mathcal{L}_2 . Some partition \mathcal{L}_1 , \mathcal{L}_2 decouples any vector **e** of weight d = 1, 2, ... into vectors **e**₁ and **e**₂ of wt $\sim d/2$.

Lists $\{\mathbf{e}_1\}$ and $\{\mathbf{e}_2\}$ have size $M \sim \binom{n/2}{d/2}$ for any linear [n, k] code.

Calculate syndromes $h(\mathbf{e}_1)$ and $h(\mathbf{e}_2)$ for each \mathbf{e}_1 and \mathbf{e}_2 .

Sort the list $\{\mathbf{e}_1\} \cup \{\mathbf{e}_2\}$ to find $\mathbf{e}_1, \mathbf{e}_2$ with $h(\mathbf{e}_1) = h(\mathbf{e}_2)$.

Output a codeword $\mathbf{c} = (\mathbf{e}_1, \mathbf{e}_2)$ if it exists and STOP.

Matching of $\{\mathbf{e}_1\}$ and $\{\mathbf{e}_2\}$ requires $\sim M \log_2 M \sim 2^{nh(\delta)/2} \sim 2^{n(1-R)/2}$ operations for classical codes on GV bound.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

Covering Sets (Prange, Leon, Kruk, Coffey-Goodman..., 1962-1990)

A set \mathcal{J} of θn positions is τ -deficient in code C[n, k] if the generator submatrix $G_{[n]\setminus \mathcal{J}}$ has rank $k - \tau$. Then *shortened* code $C_{\mathcal{J}}$ has size 2^{τ} and erasure set \mathcal{J} can be restored into some code list $M_{\mathcal{J}}$ of size $2^{\tau(\mathcal{J})}$.

Theorem: for most linear codes, all (n - k)-sets \mathcal{J} have $\tau \leq \sqrt{2n}$.

ML decoding. Use [n, n - k, d] covering of size $L \sim (n \ln n) {\binom{n}{d}} / {\binom{n-k}{d}}$. Some (n - k) set \mathcal{J} covers error e of weight d with probability $1 - e^{-n \ln n}$. Recover a code list $M_{\mathcal{J}}$ from erasure set \mathcal{J} and find the closest codeword.

Let codes $C_{\mathcal{J}} \setminus 0$ of length θn have **average** size N_{θ} (over codes $C \in \mathbb{C}$ and sets \mathcal{J}). The erasure threshold is ρ if $N_{\theta} \to 0$ for $\theta < \rho$ and $N_{\theta} \ge 1, \theta > \rho$.

Lemma 1: Most codes $C \in \mathbb{C}$ correct most erasure sets \mathcal{J} if $N_{\theta} \to 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - わへで

Lemma 2: $N_{\theta} = \sum_{\tau=0}^{\theta_n} (2^{\tau} - 1) \alpha_{\theta}(\tau)$, where $\alpha_{\theta}(\tau)$ is the fraction of τ -def. θn -sets \mathcal{J} in codes $C \in \mathbb{C}$. Most codes C have $\leq 2^{-\tau}$ fraction of τ -def. ρn -sets.

ML complexity (per trial). We need one Gaussian elimination and 2^{τ} vector add-s to recover τ -def. erasure set \mathcal{J} . This has complexity $\mathcal{D}_{\theta}(\mathcal{J}) \leq n^3 + n2^{\tau}$.

Recover θn -sets with ave. complexity $\mathcal{D}_{\theta} \leq \sum_{\tau=0}^{\theta n} (n^3 + n2^{\tau}) \alpha_{\theta}(\tau) = nN_{\theta} + n^3$. If $N_{\theta} \to 0$, only $\leq 1/n$ of codes *C* have complexity $\mathcal{D} \geq n^4 L$ over *L* trials.

DistVer (per trial). To cover any codeword $c \neq 0$ of weight *d* with sets \mathcal{J} , we take \mathcal{J} with $\tau(\mathcal{J}) \geq 1$. Again $\mathcal{D}_{\theta} \leq \sum_{\tau=1}^{\theta n} [n(2^{\tau}-1)+n^3]\alpha_{\theta}(\tau) < nN_{\theta}+n^3$.

From generic to LDPC codes. We use two general decoupled procedures, ρn -erasure recovery and δn -covering sets. Parameters δ and ρ give the no. of trials *L* and complexity exponent $F_{CS} = (\log_2 L) n \sim h(\delta) - \rho h(\delta/\rho)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - わへで

Parameters of two LDPC ensembles: Gallager 1963, Litsyn-Shevelev 2002

1. Ensemble $\mathbb{A}(\ell, m)$: all p.-check $r \times n$ matrices H with column weight ℓ and row weight $m = \ell n/r$. Code rate $R = 1 - \alpha$, where $\alpha = \ell/m$.

2. Ensemble $\mathbb{B}(\ell, m)$: *H* consists of ℓ horizontal blocks $H_1, ..., H_\ell$. Block H_1 includes *m* consecutive unit matrices of size $\frac{r}{\ell} \times \frac{r}{\ell}$. Any other block H_i is some random permutation $\pi_i(n)$ of *n* columns of H_1 . Ensembles $\mathbb{A}(\ell, m)$ and $\mathbb{B}(\ell, m)$ have the best LDPC spectra known to date.

3. For any
$$\beta \in [0, 1]$$
, let $t > 0$ be the (single) root of the equation

$$\frac{(1+t)^{m-1} + (1-t)^{m-1}}{(1+t)^m + (1-t)^m} = 1 - \beta \text{ and } q(\beta) = \alpha \log_2 \frac{(1+t)^m + (1-t)^m}{2t^{\beta m}} - \alpha m h(\beta).$$

Lemma^{*}: A vector of weight βn belongs to some code *C* of \mathbb{A} , $\mathbb{B}(\ell, m)$ with probability $\approx 2^{-nq(\beta)}$. There are on average $N_{\theta} \approx 2^{-nf(\theta)}$ nonzero vectors on any set *J* of size θn , where $f(\theta) = \max_{0 < \beta \le 1} \{q(\beta\theta) + \theta h(\beta)\}$. Distance δ and threshold ρ are the roots of : $h(\delta) + q(\delta) = 0$, $f(\rho) = 0$.

Summary for LDPC codes and improvements for the Gallager's ensemble

LDPC codes reduce both the distance δ and erasure threshold ρ of linear codes. The former factor prevails and reduces $F_{CS} = h(\delta) - \rho h(\delta/\rho)$. This design holds for any (ir)regular LDPC or other ensemble with the known δ and ρ . However, we increase F_{CS} if we need to correct δ_{VG} errors in MLD.

 F_{CS} can be reduced for the Gallager's ensemble $\mathbb{B}(\ell, m)$. Here the first* n/m parity checks have disjoint supports J_i of length m. They represent code B(1,m) with **all-even** weight (AE) m-blocks on each J_i . We use AE m-blocks of total w-t θn to cover AE m-blocks of total w-t δn , and say that vectors of w-t θn form a **Code-covering** $\mathcal{B}(\theta, \delta)$ in B(1,m).

< ロ > < 同 > < 回 > < 回 > .

Let a codeword c leave s_i parity checks with i = 0, 2, ... free positions. There are only $N_S < (n/m)^m$ possible spectra $S = \{s_0, s_2, ..., s_m\}$.

However, covering size of $\mathcal{B}(\theta, \delta)$ depends on spectra *S*.

Example. Code B(1, 8), n = 16, $\delta n = 8$, $\theta n = 12$. Α. 4 free pos. 4 free pos. В. 8 free pos. C. 6 free pos. 2 free pos. A. $s_4 = 2$, $s_{other} = 0$, $|\mathcal{B}(\theta, \delta)| = \binom{4}{2} \cdot \binom{4}{2} + 2 \cdot \binom{4}{4} \cdot \binom{4}{2} = 38$ B. $s_8 = 1$, $s_{other} = 0$, $|\mathcal{B}(\theta, \delta)| = {8 \choose 4} = 70$ **C.** $s_2 = 1$, $s_6 = 1$, $s_{other} = 0$, $|\mathcal{B}(\theta, \delta)| = {\binom{2}{2}} \cdot {\binom{6}{2}} + {\binom{2}{0}} \cdot {\binom{6}{4}} = 30$

Given $S = \{s_0, s_2, ..., s_m\}$, cover c_S of w-t δn with AE vectors $b = (c_S, b')$ of w-t θn . Here AE vector b' have w-t $\theta n - \delta n$ on the rest $n - \delta n$ positions. Let $N(\theta)$ and $N_S(\theta, \delta)$ be the number of AE vectors b and b'.

Theorem. Covering $\mathcal{B}(\theta, \delta)$ has expon. size $L_{\mathcal{S}}(\theta, \delta) \preceq N(\theta) / \min_{\mathcal{S}} N_{\mathcal{S}}(\theta, \delta)$. For $m \to \infty$, the number $L_{\mathcal{S}}(\theta, \delta)$ has the same order as the order $L(\theta, \delta) \sim {n \choose \delta n} / {n-\theta n \choose \delta n}$ of generic (non-coding) covering $T(n, \theta n, \delta n)$. For finite $m, L_{\mathcal{S}}(\theta, \delta)$ reduces the order of $L(\theta, \delta)$.

・ロット (雪) (日) (日) (日)