Distance verification for LDPC codes

Ilya Dumer
UC Riverside, USA

Background: MLD and DistVer (finding MinDist) for linear $[n, k]$-codes.
A. MLD is NP-hard (Berlecamp-McEliece-van Tilborg 1978)
B. DistVer is NP-hard (Vardy 1991)
C. DistApprox is NP-hard within a const factor or a linear additive error (Dumer-Micciancio-Sudan 1999 - RP reductions; Cheng-Wan 2009)

- Algorithms: for generic $[n, k]$-codes of rate R, DistVer and MLD require expon. complexity $2^{F(R) n}$. We discuss 3 algorithms:

Algorithm 1: Correct sliding k-window of an average weight (SW) Algorithm 2: Bipartition into halves and match syndromes (MB) Algorithm 3: Find and encode an error-free covering k-set (CS)

- Results for LDPC codes

All three algorithms carry over to LDPC codes;
All reduce DistVer complexity $2^{F(R) n}$ of linear codes
Larger reductions hold for the Gallager's ensemble.

Exponents $F(R)$ for linear codes and LDPC (ℓ, m)-codes of rate $R=k / n=1-\ell / m$

Theorem. Let some ensemble of linear codes have length $n \rightarrow \infty$, distance δn, and relative erasure-correcting threshold $\rho=\rho(R)$. Then codewords of weight δn can be found with complexity exponents as follows:

Codes on GV bound $R=1-h\left(\delta_{G V}\right)$	Any ensemble with δ and ρ
$\mathrm{b}: F_{S W}=R(1-R)$	$F_{S W}=(1-\rho) h(\delta)$
$\mathrm{c}: F_{M B}=(1-R) / 2$	$F_{M B}=h(\delta) / 2$
$\mathrm{~g}: F_{C S}=(1-R)\left(1-h\left[\delta_{G V} /(1-R)\right]\right.$	$F_{C S}=h(\delta)-\rho h(\delta / \rho)$

Sliding window (SW) technique for linear codes (Evseev 1983):
Any linear code C gives $P_{\text {error }}(C)<2 P_{M L}(C)$, by correcting $\delta_{G V}$ errors.
Note: Most LC have covering radius $\delta_{G V}(1+\varepsilon)$ (Blinovskii 1987).
Algorithm. Take any $\mathrm{SW} \mathcal{L}$ of length $s \sim k+2 \log n$ in $[n, k]$ code.
Codeword \mathbf{e} of weight d gives vector $\mathbf{e}_{\mathcal{L}}$ of weight $v \sim d R$ in some \mathcal{L}.

Take $d=1,2, \ldots$ Run $n\binom{s}{v}$ encoding trials for all $\mathbf{e}_{\mathcal{L}}$. STOP if encoded vector e has weight d. Then $F=R(1-R)$.
A. Algorithm works for all cyclic codes and most long linear codes.
B. For most linear codes, we can uniquely encode all $n \mathrm{SWs}$ on length $s=k+o(n)$. Equivalently, we correct $n-s$ erasures.
C. For LDPC codes, $s / k>1$. We increase s to get unique encoding.

Matched Bipartition (MB) technique (Dumer, Stern; 1986* - 1989**)

* MB works for any linear code and has the lowest exponent as $R \rightarrow 1$.
${ }^{* *}$ Combined with Covering Sets, MB reduces exponent $F_{C S}$ for all R.
Algorithm. Take two disjoint $n / 2$-windows \mathcal{L}_{1} and \mathcal{L}_{2}. Some partition $\mathcal{L}_{1}, \mathcal{L}_{2}$ decouples any vector e of weight $d=1,2, \ldots$ into vectors e_{1} and e_{2} of $\mathrm{wt} \sim d / 2$.

Lists $\left\{\mathbf{e}_{1}\right\}$ and $\left\{\mathbf{e}_{2}\right\}$ have size $M \sim\binom{n / 2}{d / 2}$ for any linear $[n, k]$ code.
Calculate syndromes $h\left(\mathbf{e}_{1}\right)$ and $h\left(\mathbf{e}_{2}\right)$ for each \mathbf{e}_{1} and \mathbf{e}_{2}.
Sort the list $\left\{\mathbf{e}_{1}\right\} \cup\left\{\mathbf{e}_{2}\right\}$ to find $\mathbf{e}_{1}, \mathbf{e}_{2}$ with $h\left(\mathbf{e}_{1}\right)=h\left(\mathbf{e}_{2}\right)$.
Output a codeword $\mathbf{c}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ if it exists and STOP.
Matching of $\left\{\mathbf{e}_{1}\right\}$ and $\left\{\mathbf{e}_{2}\right\}$ requires $\sim M \log _{2} M \sim 2^{n h(\delta) / 2} \sim 2^{n(1-R) / 2}$ operations for classical codes on GV bound.

Covering Sets (Prange, Leon, Kruk, Coffey-Goodman..., 1962-1990)
A set \mathcal{J} of θn positions is τ-deficient in code $C[n, k]$ if the generator submatrix $G_{[n] \backslash \mathcal{J}}$ has rank $k-\tau$. Then shortened code $C_{\mathcal{J}}$ has size 2^{τ} and erasure set \mathcal{J} can be restored into some code list $M_{\mathcal{J}}$ of size $2^{\tau(\mathcal{J})}$.

Theorem: for most linear codes, all $(n-k)$-sets \mathcal{J} have $\tau \leq \sqrt{2 n}$.
ML decoding. Use $[n, n-k, d]$ covering of size $L \sim(n \ln n)\binom{n}{d} /\binom{n-k}{d}$.
Some $(n-k)$ set \mathcal{J} covers error e of weight d with probability $1-e^{-n \ln n}$.
Recover a code list $M_{\mathcal{J}}$ from erasure set \mathcal{J} and find the closest codeword.

Let codes $C_{\mathcal{J}} \backslash 0$ of length θn have average size N_{θ} (over codes $C \in \mathbb{C}$ and sets \mathcal{J}). The erasure threshold is ρ if $N_{\theta} \rightarrow 0$ for $\theta<\rho$ and $N_{\theta} \geq 1, \theta>\rho$.

Lemma 1: Most codes $C \in \mathbb{C}$ correct most erasure sets \mathcal{J} if $N_{\theta} \rightarrow 0$.

Lemma 2: $N_{\theta}=\sum_{\tau=0}^{\theta n}\left(2^{\tau}-1\right) \alpha_{\theta}(\tau)$, where $\alpha_{\theta}(\tau)$ is the fraction of τ-def. θn-sets \mathcal{J} in codes $C \in \mathbb{C}$. Most codes C have $\leq 2^{-\tau}$ fraction of τ-def. ρn-sets.

ML complexity (per trial). We need one Gaussian elimination and 2^{τ} vector add-s to recover τ-def. erasure set \mathcal{J}. This has complexity $\mathcal{D}_{\theta}(\mathcal{J}) \leq n^{3}+n 2^{\tau}$. Recover θn-sets with ave. complexity $\mathcal{D}_{\theta} \leq \sum_{\tau=0}^{\theta n}\left(n^{3}+n 2^{\tau}\right) \alpha_{\theta}(\tau)=n N_{\theta}+n^{3}$. If $N_{\theta} \rightarrow 0$, only $\leq 1 / n$ of codes C have complexity $\mathcal{D} \geq n^{4} L$ over L trials.

DistVer (per trial). To cover any codeword $c \neq 0$ of weight d with sets \mathcal{J}, we take \mathcal{J} with $\tau(\mathcal{J}) \geq 1$. Again $\mathcal{D}_{\theta} \leq \sum_{\tau=1}^{\theta n}\left[n\left(2^{\tau}-1\right)+n^{3}\right] \alpha_{\theta}(\tau)<n N_{\theta}+n^{3}$.

From generic to LDPC codes. We use two general decoupled procedures, ρn-erasure recovery and δn-covering sets. Parameters δ and ρ give the no. of trials L and complexity exponent $F_{C S}=\left(\log _{2} L\right) n \sim h(\delta)-\rho h(\delta / \rho)$.

Parameters of two LDPC ensembles: Gallager 1963, Litsyn-Shevelev 2002

1. Ensemble $\mathbb{A}(\ell, m):$ all p.-check $r \times n$ matrices H with column weight ℓ and row weight $m=\ell n / r$. Code rate $R=1-\alpha$, where $\alpha=\ell / m$.
2. Ensemble $\mathbb{B}(\ell, m): H$ consists of ℓ horizontal blocks H_{1}, \ldots, H_{ℓ}. Block H_{1} includes m consecutive unit matrices of size $\frac{r}{\ell} \times \frac{r}{\ell}$. Any other block H_{i} is some random permutation $\pi_{i}(n)$ of n columns of H_{1}. Ensembles $\mathbb{A}(\ell, m)$ and $\mathbb{B}(\ell, m)$ have the best LDPC spectra known to date.
3. For any $\beta \in[0,1]$, let $t>0$ be the (single) root of the equation

$$
\frac{(1+t)^{m-1}+(1-t)^{m-1}}{(1+t)^{m}+(1-t)^{m}}=1-\beta \text { and } q(\beta)=\alpha \log _{2} \frac{(1+t)^{m}+(1-t)^{m}}{2 t^{\beta m}}-\alpha m h(\beta) .
$$

Lemma*: A vector of weight βn belongs to some code C of $\mathbb{A}, \mathbb{B}(\ell, m)$
with probability $\asymp 2^{-n q(\beta)}$. There are on average $N_{\theta} \asymp 2^{-n f(\theta)}$ nonzero vectors on any set J of size θn, where $f(\theta)=\max _{0<\beta \leq 1}\{q(\beta \theta)+\theta h(\beta)\}$.
Distance δ and threshold ρ are the roots of : $h(\delta)+q(\delta)=0, \quad f(\rho)=0$.

Summary for LDPC codes and improvements for the Gallager's ensemble
LDPC codes reduce both the distance δ and erasure threshold ρ of linear codes. The former factor prevails and reduces $F_{\mathrm{CS}}=h(\delta)-\rho h(\delta / \rho)$. This design holds for any (ir)regular LDPC or other ensemble with the known δ and ρ. However, we increase F_{CS} if we need to correct δ_{VG} errors in MLD.
F_{CS} can be reduced for the Gallager's ensemble $\mathbb{B}(\ell, m)$. Here the first ${ }^{*}$ n / m parity checks have disjoint supports J_{i} of length m. They represent code $B(1, m)$ with all-even weight (AE) m-blocks on each J_{i}. We use AE m-blocks of total w-t θn to cover AE m-blocks of total w-t δn, and say that vectors of w-t θn form a Code-covering $\mathcal{B}(\theta, \delta)$ in $B(1, m)$.

Let a codeword c leave s_{i} parity checks with $i=0,2, \ldots$ free positions.
There are only $N_{S}<(n / m)^{m}$ possible spectra $S=\left\{s_{0}, s_{2}, \ldots, s_{m}\right\}$.
However, covering size of $\mathcal{B}(\theta, \delta)$ depends on spectra S.
Example. Code $B(1,8), n=16, \delta n=8, \theta n=12$.
$H=\left|\begin{array}{llllllllllllllll}\mathbf{1} & \mathbf{1} & & & & & & & & \\ & & & & & & & & \mathbf{1} & \mathbf{1}\end{array}\right|$
A.
B.

C. $\quad-\quad-$

A. $s_{4}=2, s_{\text {other }}=0,|\mathcal{B}(\theta, \delta)|=\binom{4}{2} \cdot\binom{4}{2}+2 \cdot\binom{4}{4} \cdot\binom{4}{0}=38$
B. $s_{8}=1, s_{\text {other }}=0,|\mathcal{B}(\theta, \delta)|=\binom{8}{4}=70$
C. $s_{2}=1, s_{6}=1, s_{\text {other }}=0,|\mathcal{B}(\theta, \delta)|=\binom{2}{2} \cdot\binom{6}{2}+\binom{2}{0} \cdot\binom{6}{4}=30$

Given $S=\left\{s_{0}, s_{2}, \ldots, s_{m}\right\}$, cover c_{S} of w-t δn with AE vectors $b=\left(c_{S}, b^{\prime}\right)$ of w-t θn. Here AE vector b^{\prime} have w-t $\theta n-\delta n$ on the rest $n-\delta n$ positions. Let $N(\theta)$ and $N_{S}(\theta, \delta)$ be the number of AE vectors b and b^{\prime}.

Theorem. Covering $\mathcal{B}(\theta, \delta)$ has expon. size $L_{S}(\theta, \delta) \precsim N(\theta) / \min _{S} N_{S}(\theta, \delta)$.
For $m \rightarrow \infty$, the number $L_{S}(\theta, \delta)$ has the same order as the order $L(\theta, \delta) \sim\binom{n}{\delta n} /\binom{n-\theta n}{\delta n}$ of generic (non-coding) covering $T(n, \theta n, \delta n)$.

For finite $m, L_{S}(\theta, \delta)$ reduces the order of $L(\theta, \delta)$.

