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Background: MLD and DistVer (finding MinDist) for linear [n, k]-codes.
A. MLD is NP-hard (Berlecamp-McEliece-van Tilborg 1978)
B. DistVer is NP-hard (Vardy 1991)

C. DistApprox is NP-hard within a const factor or a linear additive error
(Dumer-Micciancio-Sudan 1999 - RP reductions; Cheng-Wan 2009)

e Algorithms: for generic [n, k]-codes of rate R, DistVer and MLD
require expon. complexity 27" We discuss 3 algorithms:

Algorithm 1: Correct sliding k-window of an average weight (SW)
Algorithm 2: Bipartition into halves and match syndromes (MB)
Algorithm 3: Find and encode an error-free covering k-set (CS)

o Results for LDPC codes
All three algorithms carry over to LDPC codes;
All reduce DistVer complexity 2°®" of linear codes
Larger reductions hold for the Gallager’'s ensemble.
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Exponents F(R) for linear codes and LDPC (¢, m)-co

desofrate R=k/n=1—{/m
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Theorem. Let some ensemble of linear codes have length n — oo, distance dn,
and relative erasure-correcting threshold p = p(R). Then codewords of weight dn

can be found with complexity exponents as follows:

Codes on GV bound R = 1 — h(dgv)

Any ensemble with ¢ and p

b: Fsw = R(l — R)

Fsw = (1—p)h(9)

c. Fyg = (1 —R)/2

Fup = h(9)/2

g: Fes = (1 —R)(l —h[égv/(l —R)]

Fes = h(6)—ph(d/p)
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Sliding window (SW) technique for linear codes (Evseev 1983):

Any linear code C gives Peror(C) < 2Pu(C), by correcting dgv errors.

Note: Most LC have covering radius dgv(1 + €) (Blinovskii 1987).

Algorithm. Take any SW £ of length s ~ k + 2logn in [n, k] code.

Codeword e of weight d gives vector e of weight v ~ dR in some L.

SW window £
Take d = 1,2,... Run n(®) encoding trials for all e.. STOP
if encoded vector e has weight d. Then F = R(1 — R).
A. Algorithm works for all cyclic codes and most long linear codes.

B. For most linear codes, we can uniquely encode all n SWs on
length s = k + o(n). Equivalently, we correct n — s erasures.

C. For LDPC codes, s/k > 1. We increase s to get unique encoding.
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Matched Bipartition (MB) technique (Dumer, Stern; 1986 - 1989**)
* MB works for any linear code and has the lowest exponentas R — 1.

** Combined with Covering Sets, MB reduces exponent F¢s for all R.

Algorithm. Take two disjoint n/2-windows £; and £,. Some partition £, £,
decouples any vector e of weight d = 1,2, ... into vectors e; and e, of wt ~ d/2.

€ ()

n/2-window L n/2-window L,
Lists {e|} and {e,} have size M ~ (;ﬁ) for any linear [n, k] code.
Calculate syndromes h(e;) and h(e;) for each e; and e.
Sort the list {el} U {82} to find e, e with h(el) = h(ez).

Output a codeword ¢ = (e, e;) if it exists and STOP.

Matching of {e;} and {e,} requires ~ M log, M ~ 2"(®)/2 ~, pn(1=R)/2
operations for classical codes on GV bound.
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Covering Sets (Prange, Leon, Kruk, Coffey-Goodman..., 1962-1990)

A set 7 of 0n positions is 7-deficient in code Cin, k] if the generator
submatrix Gy, 7 has rank k — 7. Then shortened code C s has size 27
and erasure set 7 can be restored into some code list M; of size 27(7).

Theorem: for most linear codes, all (n — k)-sets 7 have T < v/2n.

ML decoding. Use [n,n — k, d] covering of size L ~ (nInn) (1) /(*,").
Some (n — k) set J covers error e of weight 4 with probability 1 — e="™".

Recover a code list M s from erasure set 7 and find the closest codeword.

Let codes Cs \ 0 of length On have average size Ny (over codes C € C and

sets 7). The erasure threshold is pif Ng — 0for < pand Ny > 1, 0 > p.

Lemma 1: Most codes C € C correct most erasure sets 7 if Ng — 0.
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Lemma 2: Ny = 3% (27 — 1) ae(7), where ap(7) is the fraction of 7-def.

7=0

On-sets 7 in codes C € C. Most codes C have < 277 fraction of r-def. pn-sets.

ML complexity (per trial). We need one Gaussian elimination and 2" vector

add-s to recover T-def. erasure set 7. This has complexity Dy (J) < n® +n2".

6n
T7=0

Recover On-sets with ave. complexity Dy < 37" (n* 4+ n27)ag(7) = nNg + 1.

If N¢ — 0, only < 1/n of codes C have complexity D > n*L over L trials.

DistVer (per trial). To cover any codeword ¢ # 0 of weight d with sets 7, we

take J with 7 (7) > 1. Again Dy < 3" [n(27 — 1) + n’]ae(7) < nNg + 1.

From generic to LDPC codes. We use two general decoupled procedures,
pn-erasure recovery and dn-covering sets. Parameters § and p give the no.

of trials L and complexity exponent Fes = (log, L) n ~ h(8)—ph(d/p).
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Parameters of two LDPC ensembles: Gallager 1963, Litsyn-Shevelev 2002

1. Ensemble A(¢, m) : all p.-check r x n matrices H with column weight
£ and row weight m = ¢n/r. Code rate R = 1 — «, where ao = ¢/m.

2. Ensemble B(¢, m) : H consists of ¢ horizontal blocks Hj, ..., H,. Block
H; includes m consecutive unit matrices of size 7 x 7. Any other block
H; is some random permutation m;(n) of n columns of H;. Ensembles
A(L,m) and B(¢, m) have the best LDPC spectra known to date.

3. Forany 8 € [0, 1], let ¢ > 0 be the (single) root of the equation

2¢Pm

Lemma™: A vector of weight 8n belongs to some code C of A, B(¢, m)
with probability < 27"%) There are on average Ny =< 2~"(% nonzero
vectors on any set J of size 6n, where f(6) = maxo<s<i {q (80) + 0h(B)} .
Distance ¢ and threshold p are the roots of : A(6) + ¢q(6) =0, f(p) =0.
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Summary for LDPC codes and improvements for the Gallager’'s ensemble

LDPC codes reduce both the distance § and erasure threshold p of linear codes.
The former factor prevails and reduces Fes = h(d) — ph(d/p). This design holds
for any (ir)regular LDPC or other ensemble with the known § and p. However,
we increase F¢s if we need to correct dyg errors in MLD.

Fcs can be reduced for the Gallager’s ensemble B(¢, m). Here the first*
n/m parity checks have disjoint supports J; of length m. They represent
code B(1,m) with all-even weight (AE) m-blocks on each J;. We use AE
m-blocks of total w-t 6n to cover AE m-blocks of total w-t én, and say
that vectors of w-t 9n form a Code-covering 5(6,6) in B(1, m).

1 1 1 1 1

° ° cov
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Let a codeword c leave s; parity checks with i = 0,2, ... free positions.
There are only Ns < (n/m)" possible spectra S = {so, 52, ..., Sm}-

However, covering size of (0, §) depends on spectra S.
Example. Code B(1,8),n = 16, én = 8, 6n = 12.
11111111

H= 11111111
A o
——— ——
B 4 free pos. 4 free pos.
8 free pos.
c. .. o cieskes
N——
2 free pos. 6 free pos.

A =2, soner =0, 1B0,0)] = () - () +2- () (5 =38

B.ss = 1, soter = 0, [B(6,0)] = (}) =70
C.so = I, s6 = 1, Sother = 0, |B(075)| = @) : (g) + (g> ’ (Z) =30
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Given S = {50, 52, ..., sm }, COVer cs of w-t én with AE vectors b = (cs, b’) of
w-t On. Here AE vector b’ have w-t On — én on the rest n — dn positions.

Let N (6) and Ns(6, 6) be the number of AE vectors b and '

Theorem. Covering B(¢, 6) has expon. size Ls(0,5) < N (0) / mingNs(6,0).

For m — oo, the number Ls(6, 0) has the same order as the order
L(0,8) ~ (2)/("52") of generic (non-coding) covering T(n, On, on).
For finite m, Ls(0, §) reduces the order of L(, §).
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