Locally recoverable codes: Constructions and bounds

Alexander Barg
U. of Maryland

co-authors
Itzhak Tamo, Serge Vlădutş, Sree Goparaju, Robert Calderbank, Alexey Frolov

Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc. Companies marketing coding solutions: CleverSafe (RS codes) and others.

Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc. Companies marketing coding solutions: CleverSafe (RS codes) and others.

Cluster of machines running Hadoop at Yahoo!
Node failures are the norm

Is repair cost a real issue?

(Average number of failed nodes $=20$) $\times 15 \mathrm{~Tb}=300 \mathrm{~Tb}$

Locally Recoverable Codes

Code $\mathcal{C} \subset Q^{n},|Q|=q ; k=\log _{q}|\mathcal{C}| ; \quad d$-distance of \mathcal{C} Typically $Q=\mathbb{F}_{q}$

Locally Recoverable Codes

Code $\mathcal{C} \subset Q^{n},|Q|=q ; k=\log _{q}|\mathcal{C}| ; \quad d$-distance of \mathcal{C} Typically $Q=\mathbb{F}_{q}$

Definition (LRC codes)

Code \mathcal{C} has locality r if for every $i \in[n]$ there exists a subset $R_{i} \subset[n] \backslash i,\left|R_{i}\right| \leq r$ and a function ϕ_{i} such that for every codeword $c \in \mathcal{C}$

$$
c_{i}=\phi_{i}\left(\left\{c_{j}, j \in R_{i}\right\}\right)
$$

Locally Recoverable Codes

Code $\mathcal{C} \subset Q^{n},|Q|=q ; k=\log _{q}|\mathcal{C}| ; \quad d$-distance of \mathcal{C} Typically $Q=\mathbb{F}_{q}$

Definition (LRC codes)

Code \mathcal{C} has locality r if for every $i \in[n]$ there exists a subset $R_{i} \subset[n] \backslash i,\left|R_{i}\right| \leq r$ and a function ϕ_{i} such that for every codeword $c \in \mathcal{C}$

$$
c_{i}=\phi_{i}\left(\left\{c_{j}, j \in R_{i}\right\}\right)
$$

Examples:

Repetition codes, Single parity-check codes locality $r=k:[n, k]$ RS code; locality $r=1:[n / 2, k, n / 2-k+1] \mathrm{RS}$ codes

Locally Recoverable Codes

Code $\mathcal{C} \subset Q^{n},|Q|=q ; k=\log _{q}|\mathcal{C}| ; \quad d$-distance of \mathcal{C} Typically $Q=\mathbb{F}_{q}$

Definition (LRC codes)

Code \mathcal{C} has locality r if for every $i \in[n]$ there exists a subset $R_{i} \subset[n] \backslash i,\left|R_{i}\right| \leq r$ and a function ϕ_{i} such that for every codeword $c \in \mathcal{C}$

$$
c_{i}=\phi_{i}\left(\left\{c_{j}, j \in R_{i}\right\}\right)
$$

Examples:

Repetition codes, Single parity-check codes locality $r=k:[n, k]$ RS code; locality $r=1:[n / 2, k, n / 2-k+1]$ RS codes

Early constructions:
Prasanth, Kamath, Lalitha, Kumar, ISIT 2012
Silberstein, Rawat, Koyluoglu Vishwanath, ISIT 2013
Tamo, Papailiopoulos, Dimakis, ISIT 2013

Parameters of LRC codes

Parameters of LRC codes

Theorem (Gopalan e.a. (2011) and Papailiopoulos e.a. (2012))
Let \mathcal{C} be an (n, k, r) LRC code of cardinality q^{k} over an alphabet of size q, then:
The minimum distance of \mathcal{C} satisfies

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2 . \tag{1}
\end{equation*}
$$

The rate of \mathcal{C} satisfies

$$
\begin{equation*}
\frac{k}{n} \leq \frac{r}{r+1} . \tag{2}
\end{equation*}
$$

Parameters of LRC codes

Theorem (Gopalan e.a. (2011) and Papailiopoulos e.a. (2012))
Let \mathcal{C} be an (n, k, r) LRC code of cardinality q^{k} over an alphabet of size q, then:
The minimum distance of \mathcal{C} satisfies

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2 . \tag{1}
\end{equation*}
$$

The rate of \mathcal{C} satisfies

$$
\begin{equation*}
\frac{k}{n} \leq \frac{r}{r+1} . \tag{2}
\end{equation*}
$$

Note that $r=k$ reduces (1) to the Singleton bound

$$
d \leq n-k+1
$$

RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_{q}[x]$ and a set $A=\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathbb{F}_{q}$ define the map

$$
e v_{A}: f \mapsto\left(f\left(P_{i}\right), i=1, \ldots, n\right)
$$

RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_{q}[x]$ and a set $A=\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathbb{F}_{q}$ define the map

$$
e v_{A}: f \mapsto\left(f\left(P_{i}\right), i=1, \ldots, n\right)
$$

Example: Let $q=8, f(x)=1+\alpha x+\alpha x^{2}$

$$
f(x) \mapsto\left(1, \alpha^{4}, \alpha^{6}, \alpha^{4}, \alpha, \alpha, \alpha^{6}\right)
$$

RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_{q}[x]$ and a set $A=\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathbb{F}_{q}$ define the map

$$
e v_{A}: f \mapsto\left(f\left(P_{i}\right), i=1, \ldots, n\right)
$$

Example: Let $q=8, f(x)=1+\alpha x+\alpha x^{2}$

$$
f(x) \mapsto\left(1, \alpha^{4}, \alpha^{6}, \alpha^{4}, \alpha, \alpha, \alpha^{6}\right)
$$

Evaluation code $\mathcal{C}(A)$
Let $V=\left\{f \in \mathbb{F}_{q}[x]\right\}$ be a set of polynomials, $\operatorname{dim}(V)=k$

$$
\begin{aligned}
\mathcal{C}: V & \rightarrow \mathbb{F}_{q}^{n} \\
& f \mapsto e v_{A}(f)=\left(f\left(P_{i}\right), i=1, \ldots, n\right)
\end{aligned}
$$

Reed-Solomon codes

Reed-Solomon codes

Reed-Solomon codes

Evaluation codes with locality

Construction of (n, k, r) LRC codes: Example

Parameters: $n=9, k=4, r=2, q=13$;
Set of points: $A=\left\{P_{1}, \ldots, P_{9}\right\} \subset \mathbb{F}_{13}$

$$
\mathcal{A}=\left\{A_{1}=(1,3,9), A_{2}=(2,6,5), A_{3}=(4,12,10)\right\}
$$

Set of functions: $V=\left\{f_{a}(x)=a_{0}+a_{1} x+a_{3} x^{3}+a_{4} x^{4}\right\}$
Code construction:

$$
e v_{A}: f_{a} \mapsto\left(f\left(P_{i}\right), i=1, \ldots 9\right)
$$

Construction of (n, k, r) LRC codes: Example

Parameters: $n=9, k=4, r=2, q=13$;
Set of points: $A=\left\{P_{1}, \ldots, P_{9}\right\} \subset \mathbb{F}_{13}$

$$
\mathcal{A}=\left\{A_{1}=(1,3,9), A_{2}=(2,6,5), A_{3}=(4,12,10)\right\}
$$

Set of functions: $V=\left\{f_{a}(x)=a_{0}+a_{1} x+a_{3} x^{3}+a_{4} x^{4}\right\}$
Code construction:

$$
e v_{A}: f_{a} \mapsto\left(f\left(P_{i}\right), i=1, \ldots 9\right)
$$

E.g., $a=(1111)$ then $f_{a}(x)=1+x+x^{3}+x^{4}$

$$
\begin{aligned}
& c:=e v_{A}\left(f_{a}\right)=(\underbrace{4,8,7}_{A_{1}}|\underbrace{1,11,2}_{A_{2}}| \underbrace{0,0,0}_{A_{3}}) \\
& \left.f_{a}(x)\right|_{A_{1}}=a_{0}+a_{3}+\left(a_{1}+a_{4}\right) x
\end{aligned}
$$

Construction of (n, k, r) LRC codes: Example

Parameters: $n=9, k=4, r=2, q=13$;
Set of points: $A=\left\{P_{1}, \ldots, P_{9}\right\} \subset \mathbb{F}_{13}$

$$
\mathcal{A}=\left\{A_{1}=(1,3,9), A_{2}=(2,6,5), A_{3}=(4,12,10)\right\}
$$

Set of functions: $V=\left\{f_{a}(x)=a_{0}+a_{1} x+a_{3} x^{3}+a_{4} x^{4}\right\}$
Code construction:

$$
e v_{A}: f_{a} \mapsto\left(f\left(P_{i}\right), i=1, \ldots 9\right)
$$

E.g., $a=(1111)$ then $f_{a}(x)=1+x+x^{3}+x^{4}$

$$
\begin{aligned}
& c:=e v_{A}\left(f_{a}\right)=(\underbrace{4,8,7}_{A_{1}}|\underbrace{1,11,2}_{A_{2}}| \underbrace{0,0,0}_{A_{3}}) \\
& \left.f_{a}(x)\right|_{A_{1}}=a_{0}+a_{3}+\left(a_{1}+a_{4}\right) x=2+2 x
\end{aligned}
$$

Construction of (n, k, r) LRC codes: Example

Parameters: $n=9, k=4, r=2, q=13$;
Set of points: $A=\left\{P_{1}, \ldots, P_{9}\right\} \subset \mathbb{F}_{13}$

$$
\mathcal{A}=\left\{A_{1}=(1,3,9), A_{2}=(2,6,5), A_{3}=(4,12,10)\right\}
$$

Set of functions: $V=\left\{f_{a}(x)=a_{0}+a_{1} x+a_{3} x^{3}+a_{4} x^{4}\right\}$
Code construction:

$$
e v_{A}: f_{a} \mapsto\left(f\left(P_{i}\right), i=1, \ldots 9\right)
$$

E.g., $a=(1111)$ then $f_{a}(x)=1+x+x^{3}+x^{4}$

$$
\begin{gathered}
c:=e v_{A}\left(f_{a}\right)=(\underbrace{4,8,7}_{A_{1}}|\underbrace{1,11,2}_{A_{2}}| \underbrace{0,0,0}_{A_{3}}) \\
\left.f_{a}(x)\right|_{A_{1}}=a_{0}+a_{3}+\left(a_{1}+a_{4}\right) x=2+2 x \\
\left.f_{a}(x)\right|_{A_{2}}=a_{0}+8 a_{3}+\left(a_{1}+8 a_{4}\right) x
\end{gathered}
$$

Construction of (n, k, r) LRC codes

$$
\begin{gathered}
A=\left(P_{1}, \ldots, P_{n}\right) \subset \mathbb{F}_{q} \\
A=A_{1} \cup A_{2} \cup \cdots \cup A_{\frac{n}{r+1}}
\end{gathered}
$$

Basis of functions: Take $g(x)$ constant on $A_{i}, i=1, \ldots, \frac{n}{r+1}, \operatorname{deg}(g)=r+1$

$$
V=\left\langle g(x)^{j} x^{i}, i=0, \ldots, r-1 ; j=0, \ldots, \frac{k}{r}-1\right\rangle ; \operatorname{dim}(V)=k
$$

$$
V=\left\{f_{a}(x)=\sum_{i=0}^{r-1} \sum_{j=0}^{\frac{k}{r}-1} a_{i j} g(x)^{j} x^{i}\right\}
$$

Construction of (n, k, r) LRC codes

$$
\begin{gathered}
A=\left(P_{1}, \ldots, P_{n}\right) \subset \mathbb{F}_{q} \\
A=A_{1} \cup A_{2} \cup \cdots \cup A_{\frac{n}{r+1}}
\end{gathered}
$$

Basis of functions: Take $g(x)$ constant on $A_{i}, i=1, \ldots, \frac{n}{r+1}, \operatorname{deg}(g)=r+1$

$$
V=\left\langle g(x)^{j} x^{i}, i=0, \ldots, r-1 ; j=0, \ldots, \frac{k}{r}-1\right\rangle ; \operatorname{dim}(V)=k
$$

$$
V=\left\{f_{a}(x)=\sum_{i=0}^{r-1} \sum_{j=0}^{\frac{k}{r}-1} a_{i j} g(x)^{j} x^{i}\right\}
$$

We obtain a family of optimal r-LRC codes: $d=n-\operatorname{deg}\left(g(x)^{j} x^{i}\right) \geq n-k \frac{r+1}{r}+2$
Erasure recovery by polynomial interpolation over r points.

Piecewise constant polynomials?

Take $H<G:=\mathbb{F}^{*}$ (or $G:=\mathbb{F}^{+}$) and let

$$
g(x)=\prod_{h \in H}(x-h)
$$

Then g is constant on every coset $a H$ of H in G :

$$
g(a \bar{h})=\prod_{h \in H}(a \bar{h}-h)=\bar{h}^{-1} \prod_{h \in H}\left(a-h \bar{h}^{-1}\right)=g(a)
$$

(work with I. Tamo, IEEE Trans. Inf. Theory, Aug. 2014)

Extensions

- Codes with multiple disjoint recovery sets for every coordinate

Extensions

- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r+\rho-1, r, \rho]$ MDS

Extensions

- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r+\rho-1, r, \rho]$ MDS
- Systematic encoding

Geometric view of LRC codes

$$
\begin{gathered}
A=\{1, \ldots, 9\} \subset \mathbb{F}_{13} \\
A=A_{1} \cup A_{2} \cup A_{3} \\
A_{1}=(1,3,9) \\
A_{2}=(2,6,5) \\
A_{3}=(4,12,10)
\end{gathered}
$$

Geometric view of LRC codes

$$
\begin{gathered}
A=\{1, \ldots, 9\} \subset \mathbb{F}_{13} \\
A=A_{1} \cup A_{2} \cup A_{3} \\
A_{1}=(1,3,9) \\
A_{2}=(2,6,5) \\
A_{3}=(4,12,10)
\end{gathered}
$$

$$
\begin{aligned}
g: A & \rightarrow \mathbb{F}_{13} \\
x & \mapsto x^{3}-1
\end{aligned}
$$

Geometric view of LRC codes

$$
\begin{gathered}
A=\{1, \ldots, 9\} \subset \mathbb{F}_{13} \\
A=A_{1} \cup A_{2} \cup A_{3} \\
A_{1}=(1,3,9) \\
A_{2}=(2,6,5) \\
A_{3}=(4,12,10)
\end{gathered}
$$

$$
\begin{gathered}
g: \mathbb{F}_{13} \rightarrow\{0,7,8\} \subset \mathbb{F}_{13} \\
\left|g^{-1}(y)\right|=r+1
\end{gathered}
$$

Geometric view of LRC codes

$$
\begin{gathered}
A=\{1, \ldots, 9\} \subset \mathbb{F}_{13} \\
A=A_{1} \cup A_{2} \cup A_{3} \\
A_{1}=(1,3,9) \\
A_{2}=(2,6,5) \\
A_{3}=(4,12,10)
\end{gathered}
$$

$$
\begin{aligned}
g: A & \rightarrow \mathbb{F}_{13} \\
x & \mapsto x^{3}-1
\end{aligned}
$$

$$
\begin{gathered}
g: \mathbb{F}_{13} \rightarrow\{0,7,8\} \subset \mathbb{F}_{13} \\
\left|g^{-1}(y)\right|=r+1
\end{gathered}
$$

In the RS-like construction, $\mathcal{X}=\mathcal{Y}=\mathbb{P}^{1}$

LRC codes on curves

Consider the set of pairs $(x, y) \in \mathbb{F}_{9}$ that satisfy the equation $x^{3}+x=y^{4}$

LRC codes on curves

Consider the set of pairs $(x, y) \in \mathbb{F}_{9}$ that satisfy the equation $x^{3}+x=y^{4}$

Affine points of the Hermitian curve \mathcal{X} over $\mathbb{F}_{9} ; \alpha^{2}=\alpha+1$

Hermitian codes

$$
\begin{array}{rll}
g: \mathcal{X} & \rightarrow \mathbb{P}^{1} \\
(x, y) & \mapsto y
\end{array}
$$

Space of functions $V:=\left\langle 1, y, y^{2}, x, x y, x y^{2}\right\rangle$
$A=\left\{\right.$ Affine points of the Hermitian curve over $\left.\mathbb{F}_{9}\right\} ; n=27, k=6$

$$
\mathcal{C}: V \rightarrow \mathbb{F}_{9}^{n}
$$

Hermitian codes

$$
\begin{array}{rll}
g: \mathcal{X} & \rightarrow \mathbb{P}^{1} \\
(x, y) & \mapsto y
\end{array}
$$

Space of functions $V:=\left\langle 1, y, y^{2}, x, x y, x y^{2}\right\rangle$
$A=\left\{\right.$ Affine points of the Hermitian curve over $\left.\mathbb{F}_{9}\right\} ; n=27, k=6$

$$
\mathcal{C}: V \rightarrow \mathbb{F}_{9}^{n}
$$

E.g., message $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right)$

$$
\begin{gathered}
F(x, y)=1+\alpha y+\alpha^{2} y^{2}+\alpha^{3} x+\alpha^{4} x y+\alpha^{5} x y^{2} \\
F(0,0)=1 \text { etc. }
\end{gathered}
$$

$$
\begin{array}{rllllllll}
\alpha^{7} & & & \alpha & \alpha^{7} & \alpha^{5} & & 0 \\
\alpha^{6} & \alpha^{2} & & & & & & \\
\alpha^{5} & & & \alpha^{6} & \alpha^{4} & \alpha^{2} & & 0 \\
\alpha^{4} & & \alpha^{7} & & \alpha^{3} & \alpha^{5} & \alpha^{5} & \\
x & \alpha^{3} & & \alpha^{3} & & \alpha^{7} & & \alpha & \\
\alpha^{2} & \alpha^{3} & & & & & & & \\
\alpha & & 0 & & 0 & & 0 & & 0 \\
1 & & & 1 & & \alpha^{6} & \alpha^{4} & & 0 \\
0 & 1 & & & & & & & \\
& 0 & 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6}
\end{array} \alpha^{7}
$$

Hermitian LRC codes

Let $P=(\alpha, 1)$ be the erased location.

Let $P=(\alpha, 1)$ be the erased location. Recovery set $I_{P}=\left\{\left(\alpha^{4}, 1\right),\left(\alpha^{3}, 1\right)\right\}$ Find $f(x): f\left(\alpha^{4}\right)=\alpha^{7}, f\left(\alpha^{3}\right)=\alpha^{3}$

$$
\Rightarrow f(x)=\alpha x-\alpha^{2}
$$

Let $P=(\alpha, 1)$ be the erased location. Recovery set $I_{P}=\left\{\left(\alpha^{4}, 1\right),\left(\alpha^{3}, 1\right)\right\}$ Find $f(x): f\left(\alpha^{4}\right)=\alpha^{7}, f\left(\alpha^{3}\right)=\alpha^{3}$

$$
\begin{gathered}
\Rightarrow f(x)=\alpha x-\alpha^{2} \\
\\
f(\alpha)=0=F(P)
\end{gathered}
$$

Hermitian codes

$$
q=q_{0}^{2}, q_{0} \text { prime power }
$$

Hermitian codes

$$
q=q_{0}^{2}, q_{0} \text { prime power }
$$

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

Hermitian codes

$$
q=q_{0}^{2}, q_{0} \text { prime power }
$$

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

\mathcal{X} has $q_{0}^{3}=q^{3 / 2}$ points in \mathbb{F}_{q}

Hermitian codes

$$
q=q_{0}^{2}, q_{0} \text { prime power }
$$

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

\mathcal{X} has $q_{0}^{3}=q^{3 / 2}$ points in \mathbb{F}_{q}
Let $g: \mathcal{X} \rightarrow \mathcal{Y}=\mathbb{P}^{1}, g(P)=g(x, y):=y$

Hermitian codes

$q=q_{0}^{2}, q_{0}$ prime power

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

\mathcal{X} has $q_{0}^{3}=q^{3 / 2}$ points in \mathbb{F}_{q}
Let $g: \mathcal{X} \rightarrow \mathcal{Y}=\mathbb{P}^{1}, g(P)=g(x, y):=y$

We obtain a family of q-ary codes of length $n=q_{0}^{3}$,

$$
k=(t+1)\left(q_{0}-1\right), d \geq n-t q_{0}-\left(q_{0}-2\right)\left(q_{0}+1\right)
$$

with locality $r=q_{0}-1$.

Hermitian codes

$q=q_{0}^{2}, q_{0}$ prime power

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

\mathcal{X} has $q_{0}^{3}=q^{3 / 2}$ points in \mathbb{F}_{q}
Let $g: \mathcal{X} \rightarrow \mathcal{Y}=\mathbb{P}^{1}, g(P)=g(x, y):=y$

We obtain a family of q-ary codes of length $n=q_{0}^{3}$,

$$
k=(t+1)\left(q_{0}-1\right), d \geq n-t q_{0}-\left(q_{0}-2\right)\left(q_{0}+1\right)
$$

with locality $r=q_{0}-1$.

It is also possible to take $g(P)=x$ (projection on x); we obtain LRC codes with locality q_{0}

General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathfrak{k}

$$
g: X \rightarrow Y
$$

rational separable map of degree $r+1$

General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{k}

$$
g: X \rightarrow Y
$$

rational separable map of degree $r+1$

Lift the points of Y
$S=\left\{P_{1}, \ldots, P_{s}\right\} \subset Y(\mathbb{k})$. Partition of points:

$$
\begin{gathered}
A:=g^{-1}(S)=\left\{P_{i j}, i=0, \ldots, r, j=1, \ldots, s\right\} \subseteq X\left(\mathbb{k}_{k}\right) \\
\text { such that } g\left(P_{i j}\right)=P_{j} \text { for all } i, j
\end{gathered}
$$

General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{k}

$$
g: X \rightarrow Y
$$

rational separable map of degree $r+1$

Lift the points of Y
$S=\left\{P_{1}, \ldots, P_{s}\right\} \subset Y(\mathbb{k})$. Partition of points:

$$
\begin{gathered}
A:=g^{-1}(S)=\left\{P_{i j}, i=0, \ldots, r, j=1, \ldots, s\right\} \subseteq X(\mathbb{k}) \\
\text { such that } g\left(P_{i j}\right)=P_{j} \text { for all } i, j
\end{gathered}
$$

Let $x \in \mathbb{k}(X)$ be such that $\mathbb{k}^{(}(X)=\mathbb{k}(Y)(x)$, and let $\operatorname{deg} x=h$ as a projection $x: X \rightarrow \mathbb{P}_{\mathbb{k}}^{1}$

General construction, II

Let $Q_{\infty} \subset \pi^{-1}(\infty), \operatorname{deg} Q_{\infty}=\ell \geq 1$
Let $\mathcal{L}\left(Q_{\infty}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle, m \geq \ell-g_{Y}+1$
Function space

$$
V:=\left\langle f_{j} x^{i}, i=0, \ldots, r-1 ; j=1, \ldots, m\right\rangle
$$

General construction, II

Let $Q_{\infty} \subset \pi^{-1}(\infty), \operatorname{deg} Q_{\infty}=\ell \geq 1$
Let $\mathcal{L}\left(Q_{\infty}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle, m \geq \ell-g_{Y}+1$
Function space

$$
V:=\left\langle f_{j} x^{i}, i=0, \ldots, r-1 ; j=1, \ldots, m\right\rangle
$$

The code \mathcal{C} is an image of the map

$$
\begin{aligned}
e:=e v_{A}: & V \\
F & \longrightarrow\left(F \mathbb{k}^{(r+1) s}\right. \\
& \left.\mapsto\left(P_{i j}\right), i=0, \ldots, r, j=1, \ldots, s\right)
\end{aligned}
$$

General construction, II

Let $Q_{\infty} \subset \pi^{-1}(\infty), \operatorname{deg} Q_{\infty}=\ell \geq 1$
Let $\mathcal{L}\left(Q_{\infty}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle, m \geq \ell-g_{Y}+1$
Function space

$$
V:=\left\langle f_{j} x^{i}, i=0, \ldots, r-1 ; j=1, \ldots, m\right\rangle
$$

The code \mathcal{C} is an image of the map

$$
\begin{aligned}
e:=e v_{A}: & V \\
F & \mapsto\left(F \left(P^{(r+1) s}\right.\right. \\
& \left.\mapsto\left(P_{i j}\right), i=0, \ldots, r, j=1, \ldots, s\right)
\end{aligned}
$$

Theorem: (with I.Tamo and S.Vlădutş, '15) The subspace $\mathcal{C}(D, g) \subset \mathbb{F}_{q}$ forms an (n, k, r) linear LRC code with the parameters

$$
\left.\begin{array}{c}
n=(r+1) s \\
k=r m \geq r\left(\ell-g_{Y}+1\right) \\
d \geq n-\ell(r+1)-(r-1) h
\end{array}\right\}
$$

provided that the right-hand side of the inequality for d is a positive integer.

Asymptotically good sequences of codes

Let $q=q_{0}^{2}$, where q_{0} is a prime power. Take Garcia-Stichtenoth towers of curves:

$$
\begin{gathered}
x_{0}:=1 ; X_{1}:=\mathbb{P}^{1}, \mathbb{k}_{k}\left(X_{1}\right)=\mathbb{k}^{(}\left(x_{1}\right) \\
X_{l}: z_{l}^{q_{0}}+z_{l}=x_{l-1}^{q_{0}+1}, x_{l-1}:=\frac{z_{l-1}}{x_{l-2}} \in \mathbb{k}\left(X_{l-1}\right)(\text { if } l \geq 3)
\end{gathered}
$$

Asymptotically good sequences of codes

Let $q=q_{0}^{2}$, where q_{0} is a prime power. Take Garcia-Stichtenoth towers of curves:

$$
\begin{gathered}
x_{0}:=1 ; X_{1}:=\mathbb{P}^{1}, \mathbb{k}_{k}\left(X_{1}\right)=\mathbb{k}_{k}\left(x_{1}\right) \\
X_{l}: z_{l}^{q_{0}}+z_{l}=x_{l-1}^{q_{0}+1}, x_{l-1}:=\frac{z_{l-1}}{x_{l-2}} \in \mathbb{k}\left(X_{l-1}\right)(\text { if } l \geq 3)
\end{gathered}
$$

There exist families of q-ary LRC codes with locality r whose rate and relative distance satisfy

$$
\begin{array}{llrl}
R \geq \frac{r}{r+1}\left(1-\delta-\frac{3}{\sqrt{q}+1}\right), & r & =\sqrt{q}-1 \\
R \geq \frac{r}{r+1}\left(1-\delta-\frac{2 \sqrt{q}}{q-1}\right), & r & =\sqrt{q}
\end{array}
$$

Asymptotically good sequences of codes

Let $q=q_{0}^{2}$, where q_{0} is a prime power. Take Garcia-Stichtenoth towers of curves:

$$
\begin{gathered}
x_{0}:=1 ; X_{1}:=\mathbb{P}^{1}, \mathbb{k}_{k}\left(X_{1}\right)=\mathbb{k}_{k}\left(x_{1}\right) \\
X_{l}: z_{l}^{q_{0}}+z_{l}=x_{l-1}^{q_{0}+1}, x_{l-1}:=\frac{z_{l-1}}{x_{l-2}} \in \mathbb{k}\left(X_{l-1}\right)(\text { if } l \geq 3)
\end{gathered}
$$

There exist families of q-ary LRC codes with locality r whose rate and relative distance satisfy

$$
\begin{array}{llrl}
R \geq \frac{r}{r+1}\left(1-\delta-\frac{3}{\sqrt{q}+1}\right), & r & =\sqrt{q}-1 \\
R \geq \frac{r}{r+1}\left(1-\delta-\frac{2 \sqrt{q}}{q-1}\right), & r & =\sqrt{q}
\end{array}
$$

${ }^{*)}$ Recall the TVZ '81 bound without locality: $R \geq 1-\delta-\frac{1}{\sqrt{q}-1}$

LRC codes on curves better than the GV bound

The asymptotic GV bound can be improved for any given (constant) r for all q greater than some value.

Reducing the locality

For Hermitian or GS curves we had $r=q_{0}=\sqrt{q}$ (rather large)

Reducing the locality

For Hermitian or GS curves we had $r=q_{0}=\sqrt{q}$ (rather large)
It is possible to reduce locality by taking r such that $(r+1) \mid\left(q_{0}+1\right)$ Take $X=X_{l}, Y:=Y_{l, r}$ be such that

$$
\mathbb{k}_{k}\left(Y_{l, r}\right)=\mathbb{k}_{k}\left(x_{1}^{r+1}, z_{2}, \ldots, z_{l}\right)
$$

Reducing the locality

For Hermitian or GS curves we had $r=q_{0}=\sqrt{q}$ (rather large)
It is possible to reduce locality by taking r such that $(r+1) \mid\left(q_{0}+1\right)$
Take $X=X_{l}, Y:=Y_{l, r}$ be such that

$$
\mathbb{k}_{k}\left(Y_{l, r}\right)=\mathbb{k}_{k}\left(x_{1}^{r+1}, z_{2}, \ldots, z_{l}\right)
$$

Proposition

Let $(r+1) \mid\left(q_{0}+1\right)$. There exists a family of q-ary (n, k, r) LRC codes on the curve $X_{l}, l \geq 2$ with the parameters

$$
\left.\begin{array}{c}
n=n_{l}=q_{0}^{l-1}\left(q_{0}^{2}-1\right) \\
k \geq r\left(\ell-q_{0}^{l-1} \frac{q_{0}+1}{r+1}+1\right) \tag{3}\\
d \geq n_{l}-\ell(r+1)-(r-1) q_{0}^{l-1}
\end{array}\right\}
$$

where ℓ is any integer such that $g_{Y} \leq \ell \leq n_{l-1}$.

Reducing the locality

For Hermitian or GS curves we had $r=q_{0}=\sqrt{q}$ (rather large)
It is possible to reduce locality by taking r such that $(r+1) \mid\left(q_{0}+1\right)$
Take $X=X_{l}, Y:=Y_{l, r}$ be such that

$$
\mathbb{k}_{k}\left(Y_{l, r}\right)=\mathbb{k}_{k}\left(x_{1}^{r+1}, z_{2}, \ldots, z_{l}\right)
$$

Proposition

Let $(r+1) \mid\left(q_{0}+1\right)$. There exists a family of q-ary (n, k, r) LRC codes on the curve $X_{l}, l \geq 2$ with the parameters

$$
\left.\begin{array}{c}
n=n_{l}=q_{0}^{l-1}\left(q_{0}^{2}-1\right) \\
k \geq r\left(\ell-q_{0}^{l-1} \frac{q_{0}+1}{r+1}+1\right) \tag{3}\\
d \geq n_{l}-\ell(r+1)-(r-1) q_{0}^{l-1}
\end{array}\right\}
$$

where ℓ is any integer such that $g_{Y} \leq \ell \leq n_{l-1}$.
(asymptotic improvement of the GV bound for $r=2, q=32$)

Availability

A code \mathcal{C} is called an $\operatorname{LRC}(2)$ code if every coordinate has 2 disjoint recovery sets $R_{1, i},\left|R_{1, i}\right| \leq r_{1} ; R_{2, i},\left|R_{2, i}\right| \leq r_{2}$

Multiple recovery sets: Idea of construction

$f_{a}(\gamma)$ can be found by interpolating $\delta_{1}(x)$ as well as $\delta_{2}(x)$

Multiple recovery sets: Example

Take $\mathbb{F}=\mathbb{F}_{13} ; G, H \leq \mathbb{F}^{*} ; G=\langle 5\rangle, H=\langle 3\rangle$

$$
\begin{gathered}
\mathcal{A}_{G}=\{\{1,5,12,8\},\{2,10,11,3\},\{4,7,9,6\}\} \\
\mathcal{A}_{H}=\{\{1,3,9\},\{2,6,5\},\{4,12,10\},\{7,8,11\}\}
\end{gathered}
$$

Let

$$
\begin{aligned}
\mathbb{F}_{\mathcal{A}_{G}}[x]= & \left\{f \in \mathbb{F}[x]: f \text { is constant on } A_{i}, i=1,2,3 ; \operatorname{deg} f<\left|\mathbb{F}^{*}\right|\right\} \\
& \mathbb{F}_{\mathcal{A}_{G}}[x]=\left\langle 1, x^{4}, x^{8}\right\rangle, \quad \mathbb{F}_{\mathcal{A}_{H}}[x]=\left\langle 1, x^{3}, x^{6}, x^{9}\right\rangle
\end{aligned}
$$

Multiple recovery sets: Example

Take $\mathbb{F}=\mathbb{F}_{13} ; G, H \leq \mathbb{F}^{*} ; G=\langle 5\rangle, H=\langle 3\rangle$

$$
\begin{gathered}
\mathcal{A}_{G}=\{\{1,5,12,8\},\{2,10,11,3\},\{4,7,9,6\}\} \\
\mathcal{A}_{H}=\{\{1,3,9\},\{2,6,5\},\{4,12,10\},\{7,8,11\}\}
\end{gathered}
$$

Let

$$
\begin{aligned}
\mathbb{F}_{\mathcal{A}_{G}}[x]= & \left\{f \in \mathbb{F}[x]: f \text { is constant on } A_{i}, i=1,2,3 ; \operatorname{deg} f<\left|\mathbb{F}^{*}\right|\right\} \\
& \mathbb{F}_{\mathcal{A}_{G}}[x]=\left\langle 1, x^{4}, x^{8}\right\rangle, \quad \mathbb{F}_{\mathcal{A}_{H}}[x]=\left\langle 1, x^{3}, x^{6}, x^{9}\right\rangle
\end{aligned}
$$

We construct an $\operatorname{LRC}(12,4,\{2,3\})$, distance ≥ 6, code $\mathcal{C}: \mathbb{F}^{4} \rightarrow \mathbb{F}^{12}$

$$
\begin{gathered}
a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \mapsto f_{a}(x)=a_{0}+a_{1} x+a_{2} x^{4}+a_{3} x^{6} \\
f_{a}(x)=\sum_{i=0}^{2} f_{i}(x) x^{i}, \text { where } f_{0}(x)=a_{0}+a_{2} x^{4}, f_{1}(x)=a_{1}, f_{2}(x)=a_{3} x^{4} ; f_{i} \in \mathbb{F}_{\mathcal{A}}[x] \\
f_{a}(x)=\sum_{j=0}^{1} g_{j}(x) x^{j} \text { where } g_{0}(x)=a_{0}+a_{3} x^{6}, g_{1}(x)=a_{1}+a_{2} x^{3} ; g_{j} \in \mathbb{F}_{\mathcal{A}_{H}}[x]
\end{gathered}
$$

E.g., $f_{a}(1)$ can be recovered by computing $\delta_{1}(x), x \in\{5,12,8\}$ OR $\delta_{2}(x), x \in\{3,9\}$

Availability and codes on curves

Codes on Hermitian curves naturally provide 2 recovery sets. Generally:

$$
\operatorname{deg} g=d_{g} ; \operatorname{deg} g_{1}=\operatorname{deg} h_{2}=d_{1, g} ; \operatorname{deg} g_{2}=\operatorname{deg} h_{1}=d_{2, g}
$$

Fiber product $X=Y_{1} \times_{Y} Y_{2}$

$$
g^{*}(\mathbb{k}(Y))=g_{1}^{*}\left(\mathbb{k}\left(Y_{1}\right)\right) \cap g_{2}^{*}\left(\mathbb{k}\left(Y_{2}\right)\right)
$$

Availability and codes on curves

Codes on Hermitian curves naturally provide 2 recovery sets. Generally:

$$
\operatorname{deg} g=d_{g} ; \operatorname{deg} g_{1}=\operatorname{deg} h_{2}=d_{1, g} ; \operatorname{deg} g_{2}=\operatorname{deg} h_{1}=d_{2, g}
$$

Fiber product $X=Y_{1} \times{ }_{Y} Y_{2}$

$$
g^{*}(\mathbb{k}(Y))=g_{1}^{*}\left(\mathbb{k}\left(Y_{1}\right)\right) \cap g_{2}^{*}\left(\mathbb{k}\left(Y_{2}\right)\right)
$$

Data for constructing the code: Let $D \in \mathcal{D}(Y), D \geq 0, \operatorname{deg} D=\ell, \operatorname{supp}(D) \subset \pi^{-1}(\infty)$ $\left\{f_{1}, \ldots, f_{m}\right\}$ a basis of $L(D) \subset \mathbb{k}(Y)$. Consider the following polynomial space of dimension $m d_{g}$:

$$
L:=\operatorname{span}\left\{x_{1}^{i} x_{2}^{j} f_{k}, i=0,1, \ldots, d_{1, g}-2, j=0,1, \ldots, d_{2, g}-2, k=1, \ldots, m\right\} \subset \mathbb{k}^{(}(X) .
$$

Hermitian codes with two recovery sets

X Hermitian curve over $\mathfrak{k}=\mathbb{F}_{q}, q=q_{0}^{2}$.

Hermitian codes with two recovery sets

X Hermitian curve over $\mathbb{k}=\mathbb{F}_{q}, q=q_{0}^{2}$.
Take $e_{1} \mid\left(q_{0}+1\right)$; consider the map $g_{1}: X \rightarrow Y_{1}$

$$
g_{1}(x, y):=\left(x, y^{d_{1}}\right) ; \quad d_{1}=\frac{q_{0}+1}{e_{1}} ; r_{1}=d_{1}-1
$$

Then

$$
Y_{1}: x^{q_{0}}+x=u^{e_{1}} ; \quad \mathbb{k}^{(}\left(Y_{1}\right)=\mathbb{k}\left(x, u:=y^{d_{1}}\right)
$$

Hermitian codes with two recovery sets

X Hermitian curve over $\mathfrak{k}=\mathbb{F}_{q}, q=q_{0}^{2}$.
Take $e_{1} \mid\left(q_{0}+1\right)$; consider the map $g_{1}: X \rightarrow Y_{1}$

$$
g_{1}(x, y):=\left(x, y^{d_{1}}\right) ; \quad d_{1}=\frac{q_{0}+1}{e_{1}} ; r_{1}=d_{1}-1
$$

Then

$$
Y_{1}: x^{q_{0}}+x=u^{e_{1}} ; \quad \mathbb{k}\left(Y_{1}\right)=\mathbb{k}\left(x, u:=y^{d_{1}}\right)
$$

Take $d_{2} \mid q_{0}$ such that $q_{0}=d_{2}^{a}$ for some $a \geq 1$; consider the projection $g_{2}: X \rightarrow Y_{2}$

$$
g_{2}(x, y):=\left(v:=x^{d_{2}}+x, y\right), \text { where } \quad \mathbb{k}_{k}\left(Y_{2}\right)=\mathbb{k}(v, y) .
$$

Let $r_{2}=d_{2}-1$.

Hermitian codes with two recovery sets

X Hermitian curve over $\mathfrak{k}=\mathbb{F}_{q}, q=q_{0}^{2}$.
Take $e_{1} \mid\left(q_{0}+1\right)$; consider the map $g_{1}: X \rightarrow Y_{1}$

$$
g_{1}(x, y):=\left(x, y^{d_{1}}\right) ; \quad d_{1}=\frac{q_{0}+1}{e_{1}} ; r_{1}=d_{1}-1
$$

Then

$$
Y_{1}: x^{q_{0}}+x=u^{e_{1}} ; \quad \mathbb{k}\left(Y_{1}\right)=\mathbb{k}\left(x, u:=y^{d_{1}}\right)
$$

Take $d_{2} \mid q_{0}$ such that $q_{0}=d_{2}^{a}$ for some $a \geq 1$; consider the projection $g_{2}: X \rightarrow Y_{2}$

$$
g_{2}(x, y):=\left(v:=x^{d_{2}}+x, y\right), \text { where } \mathbb{k}_{k}\left(Y_{2}\right)=\mathbb{k}(v, y) .
$$

Let $r_{2}=d_{2}-1$. Finally, define the curve Y by $\mathbb{k}(Y):=\mathbb{k}\left(Y_{1}\right) \cap \mathbb{k}\left(Y_{2}\right) \subset \mathbb{k}(X)$.

Hermitian codes with two recovery sets

X Hermitian curve over $\mathfrak{k}=\mathbb{F}_{q}, q=q_{0}^{2}$.
Take $e_{1} \mid\left(q_{0}+1\right)$; consider the map $g_{1}: X \rightarrow Y_{1}$

$$
g_{1}(x, y):=\left(x, y^{d_{1}}\right) ; \quad d_{1}=\frac{q_{0}+1}{e_{1}} ; r_{1}=d_{1}-1
$$

Then

$$
Y_{1}: x^{q_{0}}+x=u^{e_{1}} ; \quad \mathbb{k}\left(Y_{1}\right)=\mathbb{k}\left(x, u:=y^{d_{1}}\right)
$$

Take $d_{2} \mid q_{0}$ such that $q_{0}=d_{2}^{a}$ for some $a \geq 1$; consider the projection $g_{2}: X \rightarrow Y_{2}$

$$
g_{2}(x, y):=\left(v:=x^{d_{2}}+x, y\right) \text {, where } \mathbb{k}^{(}\left(Y_{2}\right)=\mathbb{k}(v, y) .
$$

Let $r_{2}=d_{2}-1$. Finally, define the curve Y by $\mathbb{k}(Y):=\mathbb{k}\left(Y_{1}\right) \cap \mathbb{k}\left(Y_{2}\right) \subset \mathbb{k}(X)$.

This approach can be also implemented for GS curves

References

- with Itzhak Tamo, A family of optimal locally recoverable codes, IT Trans, Aug. 2014
- with Itzhak Tamo and Alexey Frolov, Bounds on the parameters of LRC codes, IT Trans., June 2016
- with Itzhak Tamo, S. Goparaju, and R. Calderbank, Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes, preprint arXiv:1603.08878
- with Itzhak Tamo and Serge Vlădutş, LRC codes on algebraic curves preprint arXiv:1603.08876

References

- with Itzhak Tamo, A family of optimal locally recoverable codes, IT Trans, Aug. 2014
- with Itzhak Tamo and Alexey Frolov, Bounds on the parameters of LRC codes, IT Trans., June 2016
- with Itzhak Tamo, S. Goparaju, and R. Calderbank, Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes, preprint arXiv:1603.08878
- with Itzhak Tamo and Serge Vlădutş, LRC codes on algebraic curves preprint arXiv:1603.08876

Thank you!

