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Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc.
Companies marketing coding solutions: CleverSafe (RS codes) and others.

Cluster of machines running Hadoop at Yahoo!

Node failures are the norm
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Is repair cost a real issue?

(Average number of failed nodes =20) ×15Tb = 300Tb
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Locally Recoverable Codes

Code C ⊂ Qn, |Q| = q ; k = logq |C|; d - distance of C
Typically Q = Fq

Definition (LRC codes)
Code C has locality r if for every i ∈ [n] there exists a subset Ri ⊂ [n]\i, |Ri| ≤ r and a
function ϕi such that for every codeword c ∈ C

ci = ϕi({cj, j ∈ Ri})

Examples:

Repetition codes, Single parity-check codes
locality r = k: [n, k] RS code; locality r = 1 : [n/2, k, n/2 − k + 1] RS codes

Early constructions:
Prasanth, Kamath, Lalitha, Kumar, ISIT 2012
Silberstein, Rawat, Koyluoglu Vishwanath, ISIT 2013
Tamo, Papailiopoulos, Dimakis, ISIT 2013
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Parameters of LRC codes

Theorem ( Gopalan e.a. (2011) and Papailiopoulos e.a. (2012))

Let C be an (n, k, r) LRC code of cardinality qk over an alphabet of size q, then:
The minimum distance of C satisfies

d ≤ n − k −
⌈

k
r

⌉
+ 2. (1)

The rate of C satisfies
k
n
≤ r

r + 1
. (2)

Note that r = k reduces (1) to the Singleton bound

d ≤ n − k + 1
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RS codes and Evaluation codes

Given a polynomial f ∈ Fq[x] and a set A = {P1, . . . ,Pn} ⊂ Fq define the map

evA : f 7→ (f (Pi), i = 1, . . . , n)

Example: Let q = 8, f (x) = 1 + αx + αx2

f (x) 7→ (1, α4, α6, α4, α, α, α6)

Evaluation code C(A)

Let V = {f ∈ Fq[x]} be a set of polynomials, dim(V) = k

C : V → Fn
q

f 7→ evA(f ) = (f (Pi), i = 1, . . . , n)
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Reed-Solomon codes
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Evaluation codes with locality
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Construction of (n, k, r) LRC codes: Example

Parameters: n = 9, k = 4, r = 2, q = 13;

Set of points: A = {P1, . . . ,P9} ⊂ F13

A = {A1 = (1, 3, 9),A2 = (2, 6, 5),A3 = (4, 12, 10)}

Set of functions: V = {fa(x) = a0 + a1x + a3x3 + a4x4}

Code construction:
evA : fa 7→ (f (Pi), i = 1, . . . 9)

E.g., a = (1111) then fa(x) = 1 + x + x3 + x4

c := evA(fa) = (4, 8, 7︸ ︷︷ ︸
A1

| 1, 11, 2︸ ︷︷ ︸
A2

| 0, 0, 0︸ ︷︷ ︸
A3

)

fa(x)|A1 = a0 + a3 + (a1 + a4)x = 2 + 2x
fa(x)|A2 = a0 + 8a3 + (a1 + 8a4)x
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Construction of (n, k, r) LRC codes

A = (P1, . . . ,Pn) ⊂ Fq

A = A1 ∪ A2 ∪ · · · ∪ A n
r+1

Basis of functions: Take g(x) constant on Ai, i = 1, . . . , n
r+1 , deg(g) = r + 1

V =
⟨

g(x)jxi, i = 0, . . . , r − 1; j = 0, . . . ,
k
r
− 1

⟩
; dim(V) = k

V =

fa(x) =
r−1∑
i=0

k
r −1∑
j=0

aijg(x)jxi



We obtain a family of optimal r-LRC codes: d = n − deg(g(x)jxi) ≥ n − k r+1
r + 2

Erasure recovery by polynomial interpolation over r points.
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Piecewise constant polynomials?

Take H < G := F∗ (or G := F+) and let

g(x) =
∏
h∈H

(x − h)

Then g is constant on every coset aH of H in G:

g(ah̄) =
∏
h∈H

(ah̄ − h) = h̄−1
∏
h∈H

(a − hh̄−1) = g(a)

(work with I. Tamo, IEEE Trans. Inf. Theory, Aug. 2014)

LRC codes 13 / 32



Extensions

▶ Codes with multiple disjoint recovery sets for every coordinate

▶ Codes that recover locally from ρ ≥ 2 erasures: The local codes are [r + ρ− 1, r, ρ]
MDS

▶ Systematic encoding
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Geometric view of LRC codes

A = {1, . . . , 9} ⊂ F13

A = A1 ∪ A2 ∪ A3

A1 = (1, 3, 9)
A2 = (2, 6, 5)
A3 = (4, 12, 10)

g : A → F13

x 7→ x3 − 1

g : F13 → {0, 7, 8} ⊂ F13

|g−1(y)| = r + 1
In the RS-like construction, X = Y = P1

LRC codes 15 / 32
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LRC codes on curves

Consider the set of pairs (x, y) ∈ F9 that satisfy the equation x3 + x = y4

α7 • • • •
α6 •
α5 • • • •
α4 • • • •

x α3 • • • •
α2 •
α • • • •
1 • • • •
0 •

0 1 α α2 α3 α4 α5 α6 α7

y

Affine points of the Hermitian curve X over F9; α
2 = α+ 1
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Hermitian codes

g : X → P1

(x, y) 7→ y

Space of functions V := ⟨1, y, y2, x, xy, xy2⟩

A={Affine points of the Hermitian curve over F9}; n = 27, k = 6

C : V → Fn
9

E.g., message (1, α, α2, α3, α4, α5)

F(x, y) = 1 + αy + α2y2 + α3x + α4xy + α5xy2

F(0, 0) = 1 etc.
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LRC codes on curves

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α
α2 α3

α 0 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y
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Hermitian LRC codes

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α
α2 α3

α X0 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y

Let P = (α, 1) be the erased location.

LRC codes 19 / 32



Local recovery with Hermitian codes

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α
α2 α3

α ? 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y

Let P = (α, 1) be the erased location. Recovery set IP = {(α4, 1), (α3, 1)}
Find f (x) : f (α4) = α7, f (α3) = α3

⇒ f (x) = αx − α2

f (α) = 0 = F(P)
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Hermitian codes

q = q2
0, q0 prime power

X : xq0 + x = yq0+1

X has q3
0 = q3/2 points in Fq

Let g : X → Y = P
1, g(P) = g(x, y) := y

We obtain a family of q-ary codes of length n = q3
0,

k = (t + 1)(q0 − 1), d ≥ n − tq0 − (q0 − 2)(q0 + 1)

with locality r = q0 − 1.

It is also possible to take g(P) = x (projection on x); we obtain LRC codes with locality
q0
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General construction

Map of curves
X, Y smooth projective absolutely irreducible curves over k

g : X → Y

rational separable map of degree r + 1

Lift the points of Y
S = {P1, . . . ,Ps} ⊂ Y(k). Partition of points:

A := g−1(S) = {Pij, i = 0, . . . , r, j = 1, . . . , s} ⊆ X(k)

such that g(Pij) = Pj for all i, j

Let x ∈ k(X) be such that k(X) = k(Y)(x), and let deg x = h as a projection x : X → P1
k

LRC codes 22 / 32
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General construction, II

Let Q∞ ⊂ π−1(∞), deg Q∞ = ℓ ≥ 1

Let L(Q∞) = ⟨f1, . . . , fm⟩,m ≥ ℓ− gY + 1

Function space
V :=

⟨
fjxi, i = 0, . . . , r − 1; j = 1, . . . ,m

⟩

The code C is an image of the map

e := evA :V −→ k
(r+1)s

F 7→ (F(Pij), i = 0, . . . , r, j = 1, . . . , s)

Theorem: (with I.Tamo and S.Vlădutş, ’15) The subspace C(D, g) ⊂ Fq forms an (n, k, r)
linear LRC code with the parameters

n = (r + 1)s

k = rm ≥ r(ℓ− gY + 1)

d ≥ n − ℓ(r + 1)− (r − 1)h


provided that the right-hand side of the inequality for d is a positive integer.
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Asymptotically good sequences of codes

Let q = q2
0, where q0 is a prime power. Take Garcia-Stichtenoth towers of curves:

x0 := 1; X1 := P1,k(X1) = k(x1);

Xl : zq0
l + zl = xq0+1

l−1 , xl−1 :=
zl−1

xl−2
∈ k(Xl−1) (if l ≥ 3)

There exist families of q-ary LRC codes with locality r whose rate and relative dis-
tance satisfy

R ≥ r
r + 1

(
1 − δ − 3

√
q + 1

)
, r =

√
q − 1

R ≥ r
r + 1

(
1 − δ −

2
√

q
q − 1

)
, r =

√
q

∗)Recall the TVZ ’81 bound without locality: R ≥ 1 − δ − 1√
q−1
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LRC codes on curves better than the GV bound

The asymptotic GV bound can be improved for any given (constant) r for all q greater
than some value.
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Reducing the locality

For Hermitian or GS curves we had r = q0 =
√

q (rather large)

It is possible to reduce locality by taking r such that (r + 1)|(q0 + 1)
Take X = Xl, Y := Yl,r be such that

k(Yl,r) = k(xr+1
1 , z2, . . . , zl)

Proposition

Let (r + 1)|(q0 + 1). There exists a family of q-ary (n, k, r) LRC codes on the curve
Xl, l ≥ 2 with the parameters

n = nl = ql−1
0 (q2

0 − 1)

k ≥ r
(
ℓ− ql−1

0
q0 + 1
r + 1

+ 1
)

d ≥ nl − ℓ(r + 1)− (r − 1)ql−1
0

 (3)

where ℓ is any integer such that gY ≤ ℓ ≤ nl−1.

(asymptotic improvement of the GV bound for r = 2, q = 32)
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Availability

A code C is called an LRC(2) code if every coordinate has 2 disjoint recovery sets
R1,i, |R1,i| ≤ r1; R2,i, |R2,i| ≤ r2
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Multiple recovery sets: Idea of construction

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

faHxL

Γ

∆1HxL

∆2HxL

fa(γ) can be found
by interpolating δ1(x)
as well as δ2(x)
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Multiple recovery sets: Example

Take F = F13; G,H ≤ F∗; G = ⟨5⟩,H = ⟨3⟩

AG = {{1, 5, 12, 8}, {2, 10, 11, 3}, {4, 7, 9, 6}}
AH = {{1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}}

Let
FAG [x] = {f ∈ F[x] : f is constant on Ai, i = 1, 2, 3; deg f < |F∗|}

FAG [x] = ⟨1, x4, x8⟩, FAH [x] = ⟨1, x3, x6, x9⟩

We construct an LRC (12, 4, {2, 3}), distance ≥ 6, code C : F4 → F12

a = (a0, a1, a2, a3) 7→ fa(x) = a0 + a1x + a2x4 + a3x6

fa(x) =
2∑

i=0

fi(x)xi, where f0(x) = a0 + a2x4, f1(x) = a1, f2(x) = a3x4; fi ∈ FA[x]

fa(x) =
1∑

j=0

gj(x)xj where g0(x) = a0 + a3x6, g1(x) = a1 + a2x3; gj ∈ FAH [x]

E.g., fa(1) can be recovered by computing δ1(x), x ∈ {5, 12, 8} OR δ2(x), x ∈ {3, 9}
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Availability and codes on curves

Codes on Hermitian curves naturally provide 2 recovery sets. Generally:

X

Y1 Y2

Y

g2g1

g

h1 h2

deg g = dg; deg g1 = deg h2 = d1,g; deg g2 = deg h1 = d2,g

Fiber product X = Y1 ×Y Y2

g∗(k(Y)) = g∗
1 (k(Y1)) ∩ g∗

2 (k(Y2))

Data for constructing the code: Let D ∈ D(Y),D ≥ 0, deg D = ℓ, supp(D) ⊂ π−1(∞)
{f1, . . . , fm} a basis of L(D) ⊂ k(Y).
Consider the following polynomial space of dimension mdg:

L := span {xi
1xj

2 fk, i = 0, 1, . . . , d1,g − 2, j = 0, 1, . . . , d2,g − 2, k = 1, . . . ,m} ⊂ k(X).
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Hermitian codes with two recovery sets

X Hermitian curve over k = Fq, q = q2
0.

Take e1|(q0 + 1); consider the map g1 : X → Y1

g1(x, y) := (x, yd1); d1 =
q0 + 1

e1
; r1 = d1 − 1

Then
Y1 : xq0 + x = ue1 ; k(Y1) = k(x, u := yd1)

Take d2|q0 such that q0 = da
2 for some a ≥ 1; consider the projection g2 : X → Y2

g2(x, y) := (v := xd2 + x, y),where k(Y2) = k(v, y).

Let r2 = d2 − 1. Finally, define the curve Y by k(Y) := k(Y1) ∩ k(Y2) ⊂ k(X).

This approach can be also implemented for GS curves
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