Locally recoverable codes: Constructions and bounds

Alexander Barg
U. of Maryland

co-authors
Itzhak Tamo, Serge Vlăduțș, Sree Goparaju, Robert Calderbank, Alexey Frolov
Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc.
Companies marketing coding solutions: CleverSafe (RS codes) and others.
Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc. **Companies marketing coding solutions:** CleverSafe (RS codes) and others.

Cluster of machines running Hadoop at Yahoo!

Node failures are the **norm**
Is repair cost a real issue?

(Average number of failed nodes =20) \times 15\,\text{Tb} = 300\,\text{Tb}
Code $C \subset Q^n$, $|Q| = q$; $k = \log_q |C|$; d - distance of C

Typically $Q = \mathbb{F}_q$
Locally Recoverable Codes

Code $\mathcal{C} \subset Q^n$, $|Q| = q$; $k = \log_q |\mathcal{C}|$; d - distance of \mathcal{C}
Typically $Q = \mathbb{F}_q$

Definition (LRC codes)

Code \mathcal{C} has locality r if for every $i \in [n]$ there exists a subset $R_i \subset [n]\setminus i$, $|R_i| \leq r$ and a function ϕ_i such that for every codeword $c \in \mathcal{C}$

$$c_i = \phi_i(\{c_j, j \in R_i\})$$
Locally Recoverable Codes

Code $C \subset Q^n$, $|Q| = q$; $k = \log_q |C|$; d - distance of C
Typically $Q = \mathbb{F}_q$

Definition (LRC codes)

Code C has *locality* r if for every $i \in [n]$ there exists a subset $R_i \subset [n]\setminus i$, $|R_i| \leq r$ and a function ϕ_i such that for every codeword $c \in C$

$$c_i = \phi_i(\{c_j, j \in R_i\})$$

Examples:

Repetition codes, Single parity-check codes
locality $r = k$: $[n, k]$ RS code; locality $r = 1$: $[n/2, k, n/2 - k + 1]$ RS codes
Locally Recoverable Codes

Code $C \subset \mathbb{Q}^n$, $|Q| = q$; $k = \log_q |C|$; d - distance of C
Typically $Q = \mathbb{F}_q$

Definition (LRC codes)

Code C has *locality* r if for every $i \in [n]$ there exists a subset $R_i \subset [n] \setminus i$, $|R_i| \leq r$ and a function ϕ_i such that for every codeword $c \in C$

$$c_i = \phi_i(\{c_j, j \in R_i\})$$

Examples:

Repetition codes, Single parity-check codes
locality $r = k$: $[n, k]$ RS code; locality $r = 1$: $[n/2, k, n/2 - k + 1]$ RS codes

Early constructions:

Prasanth, Kamath, Lalitha, Kumar, ISIT 2012
Silberstein, Rawat, Koyluoglu Vishwanath, ISIT 2013
Tamo, Papaiiopoulos, Dimakis, ISIT 2013
Theorem (Gopalan et al. (2011) and Papailiopoulos et al. (2012))

Let C be an $(n; k; r)$ LRC code of cardinality q^k over an alphabet of size q, then:

1. The minimum distance of C satisfies:
 \[d \geq n^k \left\lceil k r \right\rceil + 2 \]
 (1)

2. The rate of C satisfies:
 \[k n^r + 1 \]
 (2)

Note that $r = k$ reduces (1) to the Singleton bound $d \geq n^k + 1$.

LRC codes
Parameters of LRC codes

Theorem (Gopalan e.a. (2011) and Papailiopoulos e.a. (2012))

Let C be an (n, k, r) LRC code of cardinality q^k over an alphabet of size q, then:

The minimum distance of C satisfies

$$d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2.$$ \hspace{1cm} (1)

The rate of C satisfies

$$\frac{k}{n} \leq \frac{r}{r + 1}.$$ \hspace{1cm} (2)
Parameters of LRC codes

Theorem (Gopalan e.a. (2011) and Papailiopoulos e.a. (2012))

Let C be an (n, k, r) LRC code of cardinality q^k over an alphabet of size q, then:

The minimum distance of C satisfies

$$d \leq n - k - \left\lfloor \frac{k}{r} \right\rfloor + 2.$$ \hspace{1cm} (1)

The rate of C satisfies

$$\frac{k}{n} \leq \frac{r}{r + 1}.$$ \hspace{1cm} (2)

Note that $r = k$ reduces (1) to the **Singleton bound**

$$d \leq n - k + 1$$
Given a polynomial $f \in \mathbb{F}_q[x]$ and a set $A = \{P_1, \ldots, P_n\} \subset \mathbb{F}_q$ define the map

$$ev_A: f \mapsto (f(P_i), i = 1, \ldots, n)$$
RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_q[x]$ and a set $A = \{P_1, \ldots, P_n\} \subset \mathbb{F}_q$ define the map

$$ev_A : f \mapsto (f(P_i), i = 1, \ldots, n)$$

Example: Let $q = 8$, $f(x) = 1 + \alpha x + \alpha x^2$

$$f(x) \mapsto (1, \alpha^4, \alpha^6, \alpha^4, \alpha, \alpha, \alpha^6)$$
Given a polynomial $f \in \mathbb{F}_q[x]$ and a set $A = \{P_1, \ldots, P_n\} \subset \mathbb{F}_q$ define the map

$$ev_A : f \mapsto (f(P_i), i = 1, \ldots, n)$$

Example: Let $q = 8$, $f(x) = 1 + \alpha x + \alpha x^2$

$$f(x) \mapsto (1, \alpha^4, \alpha^6, \alpha^4, \alpha, \alpha, \alpha^6)$$

Evaluation code $C(A)$

Let $V = \{f \in \mathbb{F}_q[x]\}$ be a set of polynomials, $\dim(V) = k$

$$C : V \to \mathbb{F}_q^n$$

$$f \mapsto ev_A(f) = (f(P_i), i = 1, \ldots, n)$$
Reed-Solomon codes
Reed-Solomon codes
Evaluation codes with locality

LRC codes
Construction of \((n, k, r)\) LRC codes: Example

Parameters: \(n = 9, k = 4, r = 2, q = 13\);

Set of points: \(A = \{P_1, \ldots, P_9\} \subset \mathbb{F}_{13}\)
\(\mathcal{A} = \{A_1 = (1, 3, 9), A_2 = (2, 6, 5), A_3 = (4, 12, 10)\}\)

Set of functions: \(V = \{f_a(x) = a_0 + a_1x + a_3x^3 + a_4x^4\}\)

Code construction:
\[
ev_A : f_a \mapsto (f(P_i), i = 1, \ldots 9)
\]
Construction of \((n, k, r)\) LRC codes: Example

Parameters: \(n = 9, k = 4, r = 2, q = 13\);

Set of points: \(A = \{P_1, \ldots, P_9\} \subset \mathbb{F}_{13}\)
\[A = \{A_1 = (1, 3, 9), A_2 = (2, 6, 5), A_3 = (4, 12, 10)\}\]

Set of functions: \(V = \{f_a(x) = a_0 + a_1x + a_3x^3 + a_4x^4\}\)

Code construction:

\[ev_A : f_a \mapsto (f(P_i), i = 1, \ldots 9)\]

E.g., \(a = (1111)\) then \(f_a(x) = 1 + x + x^3 + x^4\)

\[c := ev_A(f_a) = (4, 8, 7 | 1, 11, 2 | 0, 0, 0)\]
\[f_a(x)|_{A_1} = a_0 + a_3 + (a_1 + a_4)x\]
Construction of \((n, k, r)\) LRC codes: Example

Parameters: \(n = 9, k = 4, r = 2, q = 13\);

Set of points: \(A = \{P_1, \ldots, P_9\} \subset \mathbb{F}_{13}\)
\[A = \{A_1 = (1, 3, 9), A_2 = (2, 6, 5), A_3 = (4, 12, 10)\}\]

Set of functions: \(V = \{f_a(x) = a_0 + a_1x + a_3x^3 + a_4x^4\}\)

Code construction:
\[ev_A : f_a \mapsto (f(P_i), i = 1, \ldots 9)\]

E.g., \(a = (1111)\) then \(f_a(x) = 1 + x + x^3 + x^4\)
\[c := ev_A(f_a) = (4, 8, 7 | 1, 11, 2 | 0, 0, 0)\]
\[f_a(x)|_{A_1} = a_0 + a_3 + (a_1 + a_4)x = 2 + 2x\]
Construction of \((n, k, r)\) LRC codes: Example

Parameters: \(n = 9, k = 4, r = 2, q = 13;\)

Set of points: \(A = \{P_1, \ldots, P_9\} \subset \mathbb{F}_{13}\)
\[A = \{A_1 = (1, 3, 9), A_2 = (2, 6, 5), A_3 = (4, 12, 10)\} \]

Set of functions: \(V = \{f_a(x) = a_0 + a_1x + a_3x^3 + a_4x^4\}\)

Code construction:
\[ev_A : f_a \mapsto (f(P_i), i = 1, \ldots 9) \]

E.g., \(a = (1111)\) then \(f_a(x) = 1 + x + x^3 + x^4\)

\[c := ev_A(f_a) = (4, 8, 7 \mid 1, 11, 2 \mid 0, 0, 0) \]

\[f_a(x) \mid_{A_1} = a_0 + a_3 + (a_1 + a_4)x = 2 + 2x \]
\[f_a(x) \mid_{A_2} = a_0 + 8a_3 + (a_1 + 8a_4)x \]
Construction of \((n, k, r)\) LRC codes

\[A = (P_1, \ldots, P_n) \subset \mathbb{F}_q \]

\[A = A_1 \cup A_2 \cup \cdots \cup A_{\frac{n}{r+1}} \]

Basis of functions: Take \(g(x)\) constant on \(A_i, i = 1, \ldots, \frac{n}{r+1}\), \(\deg(g) = r + 1\)

\[
V = \langle g(x)^j x^i, i = 0, \ldots, r - 1; j = 0, \ldots, \frac{k}{r} - 1 \rangle; \quad \text{dim}(V) = k
\]

\[
V = \left\{ f_a(x) = \sum_{i=0}^{r-1} \sum_{j=0}^{\frac{k}{r}-1} a_{ij} g(x)^j x^i \right\}
\]
Construction of \((n, k, r)\) LRC codes

\[
A = (P_1, \ldots, P_n) \subset \mathbb{F}_q
\]

\[
A = A_1 \cup A_2 \cup \cdots \cup A\frac{n}{r+1}
\]

Basis of functions: Take \(g(x)\) constant on \(A_i, i = 1, \ldots, \frac{n}{r+1}\), \(\deg(g) = r + 1\)

\[
V = \left\langle g(x)^j x^i, i = 0, \ldots, r - 1; j = 0, \ldots, \frac{k}{r} - 1 \right\rangle; \text{ dim}(V) = k
\]

\[
V = \left\{ f_a(x) = \sum_{i=0}^{r-1} \sum_{j=0}^{\frac{k}{r} - 1} a_{ij} g(x)^j x^i \right\}
\]

We obtain a family of optimal \(r\)-LRC codes:
\[
d = n - \deg(g(x)^j x^i) \geq n - k\frac{r+1}{r} + 2
\]

Erasure recovery by polynomial interpolation over \(r\) points.
Take $H < G := \mathbb{F}^*$ (or $G := \mathbb{F}^+$) and let

$$g(x) = \prod_{h \in H} (x - h)$$

Then g is constant on every coset aH of H in G:

$$g(a\tilde{h}) = \prod_{h \in H} (a\tilde{h} - h) = \tilde{h}^{-1} \prod_{h \in H} (a - h\tilde{h}^{-1}) = g(a)$$

 Codes with multiple disjoint recovery sets for every coordinate
- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r + \rho - 1, r, \rho]$ MDS
Extensions

- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r + \rho - 1, r, \rho]$ MDS
- Systematic encoding
Geometric view of LRC codes

\[A = \{1, \ldots, 9\} \subseteq F_{13} \]

\[A = A_1 \cup A_2 \cup A_3 \]

\[A_1 = (1, 3, 9) \]
\[A_2 = (2, 6, 5) \]
\[A_3 = (4, 12, 10) \]
Geometric view of LRC codes

\[A = \{1, \ldots, 9\} \subset \mathbb{F}_{13} \]

\[A = A_1 \cup A_2 \cup A_3 \]

\[A_1 = (1, 3, 9) \]

\[A_2 = (2, 6, 5) \]

\[A_3 = (4, 12, 10) \]

\[g: A \rightarrow \mathbb{F}_{13} \]

\[x \mapsto x^3 - 1 \]
Geometric view of LRC codes

\[A = \{1, \ldots, 9\} \subseteq \mathbb{F}_{13} \]

\[A = A_1 \cup A_2 \cup A_3 \]

\[A_1 = (1, 3, 9) \]
\[A_2 = (2, 6, 5) \]
\[A_3 = (4, 12, 10) \]

\[g : A \rightarrow \mathbb{F}_{13} \]
\[x \mapsto x^3 - 1 \]

\[g : \mathbb{F}_{13} \rightarrow \{0, 7, 8\} \subseteq \mathbb{F}_{13} \]
\[|g^{-1}(y)| = r + 1 \]
Geometric view of LRC codes

\[A = \{1, \ldots, 9\} \subseteq \mathbb{F}_{13} \]

\[A = A_1 \cup A_2 \cup A_3 \]

\[A_1 = (1, 3, 9) \]
\[A_2 = (2, 6, 5) \]
\[A_3 = (4, 12, 10) \]

\[g : A \rightarrow \mathbb{F}_{13} \]
\[x \mapsto x^3 - 1 \]

\[g : \mathbb{F}_{13} \rightarrow \{0, 7, 8\} \subseteq \mathbb{F}_{13} \]
\[|g^{-1}(y)| = r + 1 \]

In the RS-like construction, \(\mathcal{X} = \mathcal{Y} = \mathbb{F}_1 \)
Consider the set of pairs \((x, y) \in \mathbb{F}_9\) that satisfy the equation \(x^3 + x = y^4\).
Consider the set of pairs \((x, y) \in \mathbb{F}_9\) that satisfy the equation \(x^3 + x = y^4\)

Affine points of the Hermitian curve \(\mathcal{X}\) over \(\mathbb{F}_9\); \(\alpha^2 = \alpha + 1\)
Hermitian codes

\[g : \mathcal{X} \rightarrow \mathbb{P}^1 \]

\[(x, y) \mapsto y\]

Space of functions \(V := \langle 1, y, y^2, x, xy, xy^2 \rangle \)

\(A = \{ \text{Affine points of the Hermitian curve over } \mathbb{F}_9 \}; \ n = 27, k = 6 \)

\[C : V \rightarrow \mathbb{F}_9^n \]
Hermitian codes

\[g : \mathcal{X} \rightarrow \mathbb{P}^1 \]
\[(x, y) \mapsto y \]

Space of functions \(V := \langle 1, y, y^2, x, xy, xy^2 \rangle \)

\(A = \{ \text{Affine points of the Hermitian curve over } \mathbb{F}_9 \}; \ n = 27, k = 6 \)

\[C : V \rightarrow \mathbb{F}_9^n \]

E.g., message \((1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)\)

\[F(x, y) = 1 + \alpha y + \alpha^2 y^2 + \alpha^3 x + \alpha^4 xy + \alpha^5 xy^2 \]

\[F(0, 0) = 1 \text{ etc.} \]
LRC codes on curves

\[
\begin{array}{cccccc}
\alpha^7 & \alpha & \alpha^7 & \alpha^5 & 0 \\
\alpha^6 & \alpha^2 \\
\alpha^5 & \alpha^6 & \alpha^4 & \alpha^2 & 0 \\
\alpha^4 & \alpha^7 & \alpha^3 & \alpha^5 & \alpha^5 \\
x & \alpha^3 & \alpha^3 & \alpha^7 & \alpha & \alpha \\
\alpha^2 & \alpha^3 \\
\alpha & 0 & 0 & 0 & 0 \\
1 & 1 & \alpha^6 & \alpha^4 & 0 \\
0 & 1 & & & & \\
0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
y \\
\end{array}
\]
Let $P = (\alpha, 1)$ be the erased location.
Local recovery with Hermitian codes

Let $P = (\alpha, 1)$ be the erased location. Recovery set $I_P = \{(\alpha^4, 1), (\alpha^3, 1)\}$

Find $f(x) : f(\alpha^4) = \alpha^7, f(\alpha^3) = \alpha^3$

\[
\begin{align*}
\alpha^7 & \quad \alpha & \quad \alpha^7 & \quad \alpha^5 & \quad 0 \\
\alpha^6 & \quad \alpha^2 & & & \\
\alpha^5 & & \alpha^6 & \quad \alpha^4 & \quad \alpha^2 & \quad 0 \\
\alpha^4 & & \alpha^7 & \quad \alpha^3 & \quad \alpha^5 & \quad \alpha^5 \\
x & \quad \alpha^3 & & \alpha^3 & \quad \alpha^7 & \quad \alpha & \quad \alpha \\
\alpha & & ? & 0 & 0 & 0 \\
1 & 1 & \alpha^6 & \alpha^4 & 0 \\
0 & 1 & & & & \\
0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 \\
y
\end{align*}
\]

$$\Rightarrow f(x) = \alpha x - \alpha^2$$
Local recovery with Hermitian codes

\[
\begin{array}{cccccc}
\alpha^7 & \alpha & \alpha^7 & \alpha^5 & 0 \\
\alpha^6 & \alpha^2 & & & & \\
\alpha^5 & \alpha^6 & \alpha^4 & \alpha^2 & 0 \\
\alpha^4 & \alpha^7 & \alpha^3 & \alpha^5 & \alpha^5 \\
x & \alpha^3 & \alpha^3 & \alpha^7 & \alpha & \alpha \\
\alpha & ? & 0 & 0 & 0 \\
1 & 1 & \alpha^6 & \alpha^4 & 0 \\
0 & 1 & & & & \\
& 0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 & \\
\end{array}
\]

Let \(P = (\alpha, 1) \) be the erased location. Recovery set \(I_P = \{(\alpha^4, 1), (\alpha^3, 1)\} \)

Find \(f(x) : f(\alpha^4) = \alpha^7, f(\alpha^3) = \alpha^3 \)

\[
\Rightarrow f(x) = \alpha x - \alpha^2
\]

\[
f(\alpha) = 0 = F(P)
\]
Hermitian codes

\[q = q_0^2, \quad q_0 \text{ prime power} \]
Hermitian codes

$q = q_0^2$, q_0 prime power

$\mathcal{H} : x^{q_0} + x = y^{q_0} + 1$
Hermitian codes

\(q = q_0^2, q_0 \) prime power

\[\mathcal{X} : x^{q_0} + x = y^{q_0+1} \]

\(\mathcal{X} \) has \(q_0^3 = q^{3/2} \) points in \(\mathbb{F}_q \)
$q = q_0^2$, q_0 prime power

$\mathcal{X} : x^{q_0} + x = y^{q_0+1}$

\mathcal{X} has $q_0^3 = q^{3/2}$ points in \mathbb{F}_q

Let $g : \mathcal{X} \rightarrow \mathcal{Y} = \mathbb{P}^1$, $g(P) = g(x, y) := y$
Hermitian codes

$q = q_0^2$, q_0 prime power

$\mathcal{X} : x^{q_0} + x = y^{q_0+1}$

\mathcal{X} has $q_0^3 = q^{3/2}$ points in \mathbb{F}_q

Let $g : \mathcal{X} \to \mathcal{Y} = \mathbb{P}^1$, $g(P) = g(x, y) := y$

We obtain a family of q-ary codes of length $n = q_0^3$,

$$k = (t + 1)(q_0 - 1), \quad d \geq n - tq_0 - (q_0 - 2)(q_0 + 1)$$

with locality $r = q_0 - 1$.
Hermitian codes

$q = q_0^2$, q_0 prime power

$$\mathcal{X} : x^{q_0} + x = y^{q_0+1}$$

\mathcal{X} has $q_0^3 = q^{3/2}$ points in \mathbb{F}_q

Let $g : \mathcal{X} \to \mathcal{Y} = \mathbb{P}^1$, $g(P) = g(x,y) := y$

We obtain a family of q-ary codes of length $n = q_0^3$,

$$k = (t + 1)(q_0 - 1), d \geq n - tq_0 - (q_0 - 2)(q_0 + 1)$$

with locality $r = q_0 - 1$.

It is also possible to take $g(P) = x$ (projection on x); we obtain LRC codes with locality q_0
Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{K}

$g : X \to Y$

rational separable map of degree $r + 1$
General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{K}

$g : X \to Y$

rational separable map of degree $r + 1$

Lift the points of Y

$S = \{P_1, \ldots, P_s\} \subset Y(\mathbb{K})$. Partition of points:

$A := g^{-1}(S) = \{P_{ij}, i = 0, \ldots, r, j = 1, \ldots, s\} \subset X(\mathbb{K})$

such that $g(P_{ij}) = P_j$ for all i, j
General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathbb{K}

$$g : X \to Y$$

rational separable map of degree $r + 1$

Lift the points of Y

$S = \{P_1, \ldots, P_s\} \subset Y(\mathbb{K})$. Partition of points:

$$A := g^{-1}(S) = \{P_{ij}, i = 0, \ldots, r, j = 1, \ldots, s\} \subset X(\mathbb{K})$$

such that $g(P_{ij}) = P_j$ for all i, j

Let $x \in \mathbb{K}(X)$ be such that $\mathbb{K}(X) = \mathbb{K}(Y)(x)$, and let $\deg x = h$ as a projection $x : X \to \mathbb{P}^1_{\mathbb{K}}$
Let $Q_\infty \subset \pi^{-1}(\infty)$, $\deg Q_\infty = \ell \geq 1$

Let $L(Q_\infty) = \langle f_1, \ldots, f_m \rangle$, $m \geq \ell - g_Y + 1$

Function space

$$V := \langle f_j x^i, i = 0, \ldots, r - 1; j = 1, \ldots, m \rangle$$
General construction, II

Let $Q_\infty \subset \pi^{-1}(\infty)$, $\deg Q_\infty = \ell \geq 1$

Let $\mathcal{L}(Q_\infty) = \langle f_1, \ldots, f_m \rangle$, $m \geq \ell - g_Y + 1$

Function space

$$V := \left\langle f_jx^i, i = 0, \ldots, r - 1; j = 1, \ldots, m \right\rangle$$

The code C is an image of the map

$$e := ev_A : V \longrightarrow \mathbb{F}_k^{(r+1)s}$$

$$F \mapsto (F(P_{ij}), i = 0, \ldots, r, j = 1, \ldots, s)$$
Let $Q_\infty \subset \pi^{-1}(\infty), \deg Q_\infty = \ell \geq 1$

Let $\mathcal{L}(Q_\infty) = \langle f_1, \ldots, f_m \rangle, m \geq \ell - g_Y + 1$

Function space

$$V := \left\langle f_jx^i, i = 0, \ldots, r - 1; j = 1, \ldots, m \right\rangle$$

The code C is an image of the map

$$e := ev_A : V \rightarrow \mathbb{K}^{(r+1)s}$$

$$F \mapsto (F(P_{ij}), i = 0, \ldots, r, j = 1, \ldots, s)$$

Theorem: (with I. Tamo and S. Vlăduț, ’15) The subspace $C(D, g) \subset \mathbb{F}_q$ forms an (n, k, r) linear LRC code with the parameters

$$n = (r + 1)s$$

$$k = rm \geq r(\ell - g_Y + 1)$$

$$d \geq n - \ell(r + 1) - (r - 1)h$$

provided that the right-hand side of the inequality for d is a positive integer.
Asymptotically good sequences of codes

Let $q = q_0^2$, where q_0 is a prime power. Take Garcia-Stichtenoth towers of curves:

$$
x_0 := 1; \quad X_1 := \mathbb{P}^1, \quad \mathbb{K}(X_1) = \mathbb{K}(x_1);
$$

$$
X_l : z_l^{q_0^l} + z_l = x_l^{q_0^l + 1}, \quad x_{l-1} := \frac{z_l^{l-1}}{x_l^{l-2}} \in \mathbb{K}(X_{l-1}) \text{ (if } l \geq 3\text{)}
$$
Asymptotically good sequences of codes

Let $q = q_0^2$, where q_0 is a prime power. Take Garcia-Stichtenoth towers of curves:

$$x_0 := 1; \quad X_1 := \mathbb{P}^1, \quad \mathbb{k}(X_1) = \mathbb{k}(x_1): \quad X_l : z_l^{q_0} + z_l = x_{l-1}^{q_0+1}, \quad x_{l-1} := \frac{z_{l-1}}{x_{l-2}} \in \mathbb{k}(X_{l-1}) \text{ (if } l \geq 3)$$

There exist families of q-ary LRC codes with locality r whose rate and relative distance satisfy

$$R \geq \frac{r}{r + 1} \left(1 - \delta - \frac{3}{\sqrt{q} + 1} \right), \quad r = \sqrt{q} - 1$$

$$R \geq \frac{r}{r + 1} \left(1 - \delta - \frac{2\sqrt{q}}{q - 1} \right), \quad r = \sqrt{q}$$
Asymptotically good sequences of codes

Let \(q = q_0^2 \), where \(q_0 \) is a prime power. Take Garcia-Stichtenoth towers of curves:

\[
x_0 := 1; \quad X_1 := \mathbb{P}^1, \mathbb{k}(X_1) = \mathbb{k}(x_1);
\]

\[
X_l : z_l^{q_0^0} + z_l = x_l^{q_0+1}, \quad x_{l-1} := \frac{z_l-1}{x_l-2} \in \mathbb{k}(X_{l-1}) \text{ (if } l \geq 3)\]

There exist families of \(q \)-ary LRC codes with locality \(r \) whose rate and relative distance satisfy

\[
R \geq \frac{r}{r+1} \left(1 - \delta - \frac{3}{\sqrt{q} + 1} \right), \quad r = \sqrt{q} - 1
\]

\[
R \geq \frac{r}{r+1} \left(1 - \delta - \frac{2\sqrt{q}}{q - 1} \right), \quad r = \sqrt{q}
\]

*) Recall the TVZ ’81 bound without locality: \(R \geq 1 - \delta - \frac{1}{\sqrt{q-1}} \)
LRC codes on curves better than the GV bound

The asymptotic GV bound can be improved for any given (constant) r for all q greater than some value.
The asymptotic GV bound can be improved for any given (constant) r for all q greater than some value.
Reducing the locality

For Hermitian or GS curves we had \(r = q_0 = \sqrt{q} \) (rather large)
Reducing the locality

For Hermitian or GS curves we had $r = q_0 = \sqrt{q}$ (rather large)

It is possible to reduce locality by taking r such that $(r + 1)|(q_0 + 1)$

Take $X = X_l, Y := Y_{l,r}$ be such that

$$\mathbb{L}(Y_{l,r}) = \mathbb{L}(x_1^{r+1}, z_2, \ldots, z_l)$$
Reducing the locality

For Hermitian or GS curves we had $r = q_0 = \sqrt{q}$ (rather large)
It is possible to reduce locality by taking r such that $(r + 1) | (q_0 + 1)$
Take $X = X_l$, $Y := Y_{l,r}$ be such that

$$\mathbb{K}(Y_{l,r}) = \mathbb{K}(x_1^{r+1}, z_2, \ldots, z_l)$$

Proposition

Let $(r + 1) | (q_0 + 1)$. There exists a family of q-ary (n, k, r) LRC codes on the curve $X_l, l \geq 2$ with the parameters

$$n = n_l = q_0^{l-1}(q_0^2 - 1)$$

$$k \geq r\left(\ell - q_0^{l-1}\frac{q_0 + 1}{r + 1} + 1\right)$$

$$d \geq n_l - \ell(r + 1) - (r - 1)q_0^{l-1}$$

(3)

*where ℓ is any integer such that $g_Y \leq \ell \leq n_{l-1}$.***
Reducing the locality

For Hermitian or GS curves we had \(r = q_0 = \sqrt{q} \) (rather large)
It is possible to reduce locality by taking \(r \) such that \((r + 1)|/(q_0 + 1)\)
Take \(X = X_l, Y := Y_{l,r} \) be such that

\[
\mathbb{L}(Y_{l,r}) = \mathbb{L}(x_1^{r+1}, z_2, \ldots, z_l)
\]

Proposition

Let \((r + 1)|(q_0 + 1)\). There exists a family of \(q\)-ary \((n, k, r)\) LRC codes on the curve \(X_l, l \geq 2\) with the parameters

\[
\begin{align*}
n &= n_l = q_0^{l-1}(q_0^2 - 1) \\
k &\geq r\left(l - q_0^{l-1}\frac{q_0 + 1}{r + 1} + 1 \right) \\
d &\geq n_l - l(r+1) - (r-1)q_0^{l-1}
\end{align*}
\]

where \(l\) is any integer such that \(g_Y \leq l \leq n_l - 1\).

(asymptotic improvement of the GV bound for \(r = 2, q = 32\))
A code C is called an $LRC(2)$ code if every coordinate has 2 disjoint recovery sets $R_{1,i}, |R_{1,i}| \leq r_1; R_{2,i}, |R_{2,i}| \leq r_2$
Multiple recovery sets: Idea of construction

\[f_a(\gamma) \text{ can be found by interpolating } \delta_1(x) \text{ as well as } \delta_2(x) \]
Multiple recovery sets: Example

Take $\mathbb{F} = \mathbb{F}_{13}$; $G, H \leq \mathbb{F}^*$; $G = \langle 5 \rangle$, $H = \langle 3 \rangle$

$A_G = \{\{1, 5, 12, 8\}, \{2, 10, 11, 3\}, \{4, 7, 9, 6\}\}$
$A_H = \{\{1, 3, 9\}, \{2, 6, 5\}, \{4, 12, 10\}, \{7, 8, 11\}\}$

Let

$\mathbb{F}_{A_G}[x] = \{f \in \mathbb{F}[x] : f \text{ is constant on } A_i, i = 1, 2, 3; \text{ deg } f < |\mathbb{F}^*|\}$

$\mathbb{F}_{A_G}[x] = \langle 1, x^4, x^8 \rangle$, $\mathbb{F}_{A_H}[x] = \langle 1, x^3, x^6, x^9 \rangle$
Multiple recovery sets: Example

Take $\mathbb{F} = \mathbb{F}_{13}$; $G, H \leq \mathbb{F}^*$; $G = \langle 5 \rangle$, $H = \langle 3 \rangle$

$$\mathcal{A}_G = \{\{1, 5, 12, 8\}, \{2, 10, 11, 3\}, \{4, 7, 9, 6\}\}$$
$$\mathcal{A}_H = \{\{1, 3, 9\}, \{2, 6, 5\}, \{4, 12, 10\}, \{7, 8, 11\}\}$$

Let

$$\mathbb{F}_{\mathcal{A}_G}[x] = \{f \in \mathbb{F}[x] : f \text{ is constant on } A_i, i = 1, 2, 3; \deg f < |\mathbb{F}^*|\}$$
$$\mathbb{F}_{\mathcal{A}_G}[x] = \langle 1, x^4, x^8 \rangle, \quad \mathbb{F}_{\mathcal{A}_H}[x] = \langle 1, x^3, x^6, x^9 \rangle$$

We construct an LRC $(12, 4, \{2, 3\})$, distance ≥ 6, code $C : \mathbb{F}^4 \to \mathbb{F}^{12}$

$$a = (a_0, a_1, a_2, a_3) \mapsto f_a(x) = a_0 + a_1x + a_2x^4 + a_3x^6$$

$$f_a(x) = \sum_{i=0}^{2} f_i(x)x^i, \text{ where } f_0(x) = a_0 + a_2x^4, f_1(x) = a_1, f_2(x) = a_3x^4; f_i \in \mathbb{F}_{\mathcal{A}}[x]$$

$$f_a(x) = \sum_{j=0}^{1} g_j(x)x^j \text{ where } g_0(x) = a_0 + a_3x^6, g_1(x) = a_1 + a_2x^3; g_j \in \mathbb{F}_{\mathcal{A}_H}[x]$$

E.g., $f_a(1)$ can be recovered by computing $\delta_1(x), x \in \{5, 12, 8\}$ OR $\delta_2(x), x \in \{3, 9\}$
Codes on Hermitian curves naturally provide 2 recovery sets. Generally:

\[\text{deg } g = d_g; \text{deg } g_1 = \text{deg } h_2 = d_{1,g}; \text{deg } g_2 = \text{deg } h_1 = d_{2,g} \]

Fiber product \(X = Y_1 \times_Y Y_2 \)

\[g^*(\mathbb{k}(Y)) = g_1^*(\mathbb{k}(Y_1)) \cap g_2^*(\mathbb{k}(Y_2)) \]
Codes on Hermitian curves naturally provide 2 recovery sets. Generally:

\[
\begin{align*}
\text{deg } g &= d_g; \quad \text{deg } g_1 = \text{deg } h_2 = d_1,g; \quad \text{deg } g_2 = \text{deg } h_1 = d_2,g \nend{align*}
\]

Fiber product \(X = Y_1 \times_Y Y_2 \)

\[
g^*(\mathbb{L}(Y)) = g_1^*(\mathbb{L}(Y_1)) \cap g_2^*(\mathbb{L}(Y_2))
\]

Data for constructing the code: Let \(D \in \mathcal{D}(Y), \ D \geq 0, \ \text{deg } D = \ell, \ \text{supp}(D) \subset \pi^{-1}(\infty) \) \(\{f_1, \ldots, f_m\} \) a basis of \(L(D) \subset \mathbb{L}(Y) \). Consider the following polynomial space of dimension \(md_g \):

\[
L := \text{span} \{x_1^ix_2^jf_k, \ i = 0, 1, \ldots, d_1,g - 2, j = 0, 1, \ldots, d_2,g - 2, k = 1, \ldots, m\} \subset \mathbb{L}(X).
\]
Hermitian codes with two recovery sets

X Hermitian curve over $\mathbb{K} = \mathbb{F}_q$, $q = q_0^2$.
Hermitian codes with two recovery sets

X Hermitian curve over $\mathbb{K} = \mathbb{F}_q$, $q = q_0^2$.

Take $e_1|(q_0 + 1)$; consider the map $g_1 : X \to Y_1$

$$g_1(x, y) := (x, y^{d_1}); \quad d_1 = \frac{q_0 + 1}{e_1}; \quad r_1 = d_1 - 1$$

Then

$$Y_1 : x^{q_0} + x = u^{e_1}; \quad \mathbb{K}(Y_1) = \mathbb{K}(x, u := y^{d_1})$$
X Hermitian curve over $\mathbb{K} = \mathbb{F}_q$, $q = q_0^2$.

Take $e_1|q_0 + 1$; consider the map $g_1 : X \rightarrow Y_1$

$$g_1(x, y) := (x, y^{d_1}); \quad d_1 = \frac{q_0 + 1}{e_1}; \quad r_1 = d_1 - 1$$

Then

$$Y_1 : x^{q_0} + x = u^{e_1}; \quad \mathbb{k}(Y_1) = \mathbb{k}(x, u := y^{d_1})$$

Take $d_2|q_0$ such that $q_0 = d_2^a$ for some $a \geq 1$; consider the projection $g_2 : X \rightarrow Y_2$

$$g_2(x, y) := (v := x^{d_2} + x, y), \text{ where } \mathbb{k}(Y_2) = \mathbb{k}(v, y).$$

Let $r_2 = d_2 - 1$.
Hermitian codes with two recovery sets

Let X be a Hermitian curve over \mathbb{F}_q, $q = q_0^2$.

Take $e_1 | (q_0 + 1)$; consider the map $g_1 : X \to Y_1$

$$g_1(x, y) := (x, y^{d_1}); \quad d_1 = \frac{q_0 + 1}{e_1}; \quad r_1 = d_1 - 1$$

Then

$$Y_1 : x^{q_0} + x = u^{e_1}; \quad \mathbb{L}(Y_1) = \mathbb{L}(x, u := y^{d_1})$$

Take $d_2 | q_0$ such that $q_0 = d_2^a$ for some $a \geq 1$; consider the projection $g_2 : X \to Y_2$

$$g_2(x, y) := (v := x^{d_2} + x, y), \text{ where } \mathbb{L}(Y_2) = \mathbb{L}(v, y).$$

Let $r_2 = d_2 - 1$. Finally, define the curve Y by $\mathbb{L}(Y) := \mathbb{L}(Y_1) \cap \mathbb{L}(Y_2) \subset \mathbb{L}(X)$.

This approach can be also implemented for GS curves.
Hermitian codes with two recovery sets

X Hermitian curve over \mathbb{F}_q, $q = q_0^2$.

Take $e_1|(q_0 + 1)$; consider the map $g_1 : X \to Y_1$

$$g_1(x, y) := (x, y^{d_1}); \quad d_1 = \frac{q_0 + 1}{e_1}; r_1 = d_1 - 1$$

Then

$$Y_1 : x^{q_0} + x = u^{e_1}; \quad \mathbb{k}(Y_1) = \mathbb{k}(x, u := y^{d_1})$$

Take $d_2|q_0$ such that $q_0 = d_2^a$ for some $a \geq 1$; consider the projection $g_2 : X \to Y_2$

$$g_2(x, y) := (v := x^{d_2} + x, y), \text{ where } \mathbb{k}(Y_2) = \mathbb{k}(v, y).$$

Let $r_2 = d_2 - 1$. Finally, define the curve Y by $\mathbb{k}(Y) := \mathbb{k}(Y_1) \cap \mathbb{k}(Y_2) \subset \mathbb{k}(X)$.

This approach can be also implemented for GS curves.
▶ with Itzhak Tamo, A family of optimal locally recoverable codes, IT Trans, Aug. 2014

▶ with Itzhak Tamo and Alexey Frolov, Bounds on the parameters of LRC codes, IT Trans., June 2016

▶ with Itzhak Tamo, S. Goparaju, and R. Calderbank, Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes, preprint arXiv:1603.08878

▶ with Itzhak Tamo and Serge Vlădutș, LRC codes on algebraic curves preprint arXiv:1603.08876
References

- with Itzhak Tamo, A family of optimal locally recoverable codes, IT Trans, Aug. 2014
- with Itzhak Tamo and Alexey Frolov, Bounds on the parameters of LRC codes, IT Trans., June 2016
- with Itzhak Tamo, S. Goparaju, and R. Calderbank, Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes, preprint arXiv:1603.08878
- with Itzhak Tamo and Serge Vlădutș, LRC codes on algebraic curves preprint arXiv:1603.08876

Thank you!