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What is private information retrieval?
x = (x1, x2, . . . , xn) xi =

Alice

Queries

Answers

Private information retrieval (PIR)
Alice wishes to retrieve a data item xi from the database (x1, x2, . . . , xn)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.

Naive

Solution: Ask the server to send the entire database!

This is the only solution possible! Communication cost = Ω(n).

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.
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Two general classes of solutions

Computational PIR
The server is computationally bounded + standard cryptographic
assumptions (one-way functions, quadratic residuosity).

E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database, computationally-private
information retrieval, Proc. 38-th IEEE Symp. Foundations Computer Science, pp. 364–373, October 1997.

Information-theoretic PIR
The database is replicated among k > 2 non-communicating serv-
ers, with guarantees of information-theoretic privacy.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,
Private information retrieval, Proc. 36-th IEEE Symposium

Foundations Computer Science, pp. 41–50, October 1995.

This talk: We consider only information-theoretic PIR!
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Information-theoretic PIR: Example
Replication among k = 4 servers S1,S2,S3,S4 with communication cost
of 8
√

n + 4 bits. The database is represented as a square of side
√

n.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.

Query generation:
Alice wishes to retrieve xs,t. She generates the vectors
y, z∈{0, 1}

√
n uniformly at random, and sends

S1 ← (y, z), S2 ← (y + es, z),
S3 ← (y, z + et), S4 ← (y + es, z + et)

√
n

√
n

•
xs,t

s

t

Answer computation:
u

v

Given a query (u, v), each server Si returns the
following:

a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j
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Information-theoretic PIR: Example
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Answer computation:
a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j

Reconstruction:

a1
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1 The bit xs,t contributes to exactly one of the answers a1, a2, a3, a4.
2 All other bits in the database contribute an even number of times.

It follows from 1 and 2 that: a1 + a2 + a3 + a4 = xs,t
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Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.
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What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?
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This talk: The main theme

This is cryptography, people!
We do the impossible

for breakfast.

Open Problem: Can we achieve information-theoretic
PIR with low communication cost but without doubling
(or worse if k > 3) the number of bits we need to store?

Taking cue from distributed storage: In practice, the database may need
to be stored in a distributed manner (e.g., for security or reliability purposes).

Key idea: Partitioning the database
Partition the database string x into parts x1, x2, . . . , xs. We will use m > k
non-communicating servers. But each server will store only part of the
database, so that the total number of bits stored is (1 + ε)n.
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Conventional k-server PIR
Definition: k-server PIR scheme
A k-server PIR scheme consists of the following: a binary string x of length n,
called the database, k non-communicating servers S1,S2, . . . ,Sk each storing
a replica of x, a user Alice who wishes to retrieve xi for some i ∈ [n], without
revealing i to any of the servers, and a k-server PIR protocol.

Definition: k-server PIR protocol [CKGS95]
The k-server PIR protocol P involves a triple of algorithms Q, A, C and con-
sists of the following steps:

1 Alice flips coins and uses the random outcome to invoke the query al-
gorithm Q(k, n; i) that generates a k-tuple of queries q1, q2, . . . , qk.

2 For all j∈ [k], Alice sends the query qj to the j-th server Sj.
3 For all j∈ [k], the server Sj invokes the answer algorithmA to respond

with the answer aj = A(k, j; x, qj).
4 Alice computes xi using the reconstruction algorithm C(k, n; i, a1, . . . , ak).

The three algorithms together satisfy the correctness (C(k, n; i, a1, . . . , ak) = xi)
and the privacy (distibution of qj independent of i ) conditions defined earlier.



Conventional k-server PIR: Linearity
Our construction of distributed PIR schemes with low
storage overhead uses two main ingredients:

1 A binary linear code C with a certain special
property, to be defined shortly.

2 An existing k-server PIR protocol in which the
answer algorithm is linear in the database.

Definition: Linear k-server PIR protocol
A k-server PIR protocol P

(
Q,A, C

)
is linear if for all x1, x2 ∈{0,1}n

and for all possible queries q, the following holds:

A(k, j; x1 + x2, q) = A(k, j; x1, q) + A(k, j; x2, q) for all j∈ [k]

Good news: All known PIR protocols are linear!

Note: We also assume that the answer algorithmA is public knowledge. This
means that any server can simulate the answers of any other server.
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Example: Coded 3-server PIR
Example: Reducing the storage overhead of 3-server PIR
Consider any existing 3-server PIR protocol P

(
Q,A, C

)
, and assume it

is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length n into 4 parts x1, x2, x3, x4, each of
length n/4. These parts are distributed among 8 servers as follows:

S1: c1 = x1 S5: c5 = x1 + x2
S2: c2 = x2 S6: c6 = x2 + x3
S3: c3 = x3 S7: c7 = x3 + x4
S4: c4 = x4 S8: c8 = x4 + x1

(?)

The result is a coded PIR scheme with s = 4 parts x1, x2, x3, x4 and m = 8
coded shares c1, c2, c3, c4, c5, c6, c7, c8.

storage overhead =
n/s bits stored on m servers

n bits in the database
=

m
s
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Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i).
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)
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Coded k-server PIR: Definition
Definition: Coded k-server PIR scheme
A coded k-server PIR scheme with s parts and m shares consists of the
following ingredients:

A binary string x of length n, called the database, that is partiti-
oned into s parts x1, x2, . . . , xs, each of length n/s.
Coded shares c1, c2, . . . , cm of length n/s, where cj is a linear fun-
ction of x1, x2, . . . , xs for all j∈ [m], stored in m non-communicat-
ing servers S1,S2, . . . ,Sm.
A user Alice who wishes to retrieve xi for some i∈ [n], without
revealing i to any of the servers.

A coded k-server PIR protocol P∗
(
Q∗,A∗, C∗

)
that emulates a con-

ventional k-server PIR protocol P(Q,A, C).

Note: The emulation property of P∗
(
Q∗,A∗, C∗

)
can be formally defined.

Theorem 1: Storage overhead of coded PIR
The storage overhead of a coded k-server PIR scheme
with s parts and m coded shares is m/s.
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General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.
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The example revisited
In the encoding equations (?) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1 = x1, c3 = x3, c5 = x1 + x2, c7 = x3 + x4
c2 = x2, c4 = x4, c6 = x2 + x3, c8 = x4 + x1

Rewrite these equations in matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8) = (x1, x2, x3, x4)

 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Observe that each part x1, x2, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

x1 = c1 = c5 + c2 = c8 + c4
x2 = c2 = c5 + c1 = c6 + c3
x3 = c3 = c6 + c3 = c7 + c4
x4 = c4 = c7 + c3 = c8 + c1

Moreover, each coded share c1, c2, c3, c4, c5, c6, c7, c8 appears in each of the
four recovery equations above no more than once.
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PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3

Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.
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Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.
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Recovery equations from PIR codes
Lemma 2: Disjoint recovery sets
Let C be a k-server PIR code and let G be an s×m generator matrix for C with
property Pk. Let c = xG be the encoding of a message x = (x1, x2, . . . , xs). Then
for all i∈ [s], there exist k disjoint recovery setsR1,R2, . . . ,Rk such that

xi = ∑
j∈R1

cj = ∑
j∈R2

cj = · · · = ∑
j∈Rk

cj

Proof. Let g1, g2, . . . , gm denote the columns of G. Then c = xG can be writ-
ten in terms of the inner products of these columns with x, as follows:

c = (c1, c2, . . . , cm) = (〈x, g1〉, 〈x, g2〉 , . . . , 〈x, gm〉)

Now suppose that for some set of indices R =
{

j1, j2, . . . , jr
}
⊆ [m], the corres-

ponding columns of G add to the unit vector ei. Then

cj1+ · · ·+ cjr =
〈
x, gj1

〉
+ · · ·+

〈
x, gjr

〉
=

〈
x, gj1+ · · ·+ gjr

〉
= 〈x, ei〉 = xi

It follows from the above that the recovery setsR1,R2, . . . ,Rk⊆ [m], are simply
the indices of the disjoint sets of columns of G that add up to ei. �
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Construction of coded PIR schemes
Theorem 3: Coded PIR schemes from PIR codes
Suppose there exists a k-server PIR code C of length m and dimension s and
a k-server linear PIR protocolP(Q,A,C). Then there exists a coded PIR scheme
with s parts and m shares along with the corresponding coded PIR protocol.

Proof. Let G be a generator matrix for C with property Pk. Then the coded
shares are computed from the database parts x1, x2, . . . , xs as follows:

(c1, c2, . . . , cm) = (x1, x2, . . . , xs) G

Assume Alice wishes to read the i-th bit from the `-th part of the database,
namely the bit x`,i for some i∈ [n/s]. She will proceed as follows.

1 Alice invokes the query algorithm of P(Q,A, C) to generate k random-
ized queries q1, q2, . . . , qk := Q(k, n/s; i).

2 She next finds k disjoint recovery setsR1,R2, . . . ,Rk ⊆ [m] such that

x` = ∑j∈R1
cj = ∑j∈R2

cj = · · · = ∑j∈Rk
cj

Such sets exist by Lemma 2. They are used to determine how to assign
the queries q1, q2, . . . , qk to the servers S1,S2, . . . ,Sm.
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Proof of main theorem ...continued
3 Let R = R1 ∪R2 · · · ∪ Rk be the union of the k recovery sets. For each

j∈R, Alice finds the unique t∈ [k] such that j∈Rt and sets q∗j = qt. For
j 6∈ R, the query q∗j can be set arbitrarily (say q∗j = q1), since the response
from Sj will be ignored. Alice sends the queries to servers as follows:

(S1,S2, . . . ,Sm) ←−
(
q∗1 , q∗2 , . . . , q∗m

)
Note: The privacy of the queries q∗1 , q∗2 , . . . , q∗m is inherited
from the original PIR protocol P(Q,A, C) being emulated.

4 Alice collects the answers aj =A(k, j; cj, q∗j ) = A(k, t; cj, qt) from the serv-
ers, for all j∈R, and computes:

a′t
def= ∑

j∈Rt

A(k, t; cj, qt) = A
(

k, t; ∑j∈Rtcj, qt

)
= A(k, t; x`, qt)

for t = 1, 2, . . . , k, where the first equality follows from the linearity of the
answer algorithm A and the second from the recovery equations for x`.

5 Alice completes the retrieval by invoking the reconstruction algorithm of
the emulated protocol P(Q,A, C) as follows:

C(k, n/s; i, a′1, . . . , a′k) = C
(
k, n/s; i,A(k,1; x`, q1), . . . ,A(k, k; x`, qk)

)
= x`,i �



What about communication cost?
In order to reduce storage overhead, we emulate a conventional
PIR protocol P by a coded PIR protocol P∗. How much do we
pay in communication complexity?

U(P ; n) def= Worst-case total number of bits uploaded
by a protocol P for a database of length n

D(P ; n) def= Worst-case total number of bits downloaded
by a protocol P for a database of length n

Theorem 4: Communication complexity of coded PIR
Suppose there exists a k-server PIR code C of length m and dimension s. Then
any linear k-server PIR protocol P can be emulated by a coded PIR protocol P∗
with s parts and m shares, having communication complexity:

U
(
P∗; n

)
6 m

k
U(P ; n/s) + m log k and D

(
P∗; n

)
6 m

k
D(P ; n/s)

Proof. On the upload side, the number of queries increases from k to m,
but each query is shorter as it is generated by Q(k, n/s; i) rather than Q(k, n; i).
On the download side, the number of answers also increases from k to m. �



What about communication cost?
In order to reduce storage overhead, we emulate a conventional
PIR protocol P by a coded PIR protocol P∗. How much do we
pay in communication complexity?

U(P ; n) def= Worst-case total number of bits uploaded
by a protocol P for a database of length n

D(P ; n) def= Worst-case total number of bits downloaded
by a protocol P for a database of length n

Theorem 4: Communication complexity of coded PIR
Suppose there exists a k-server PIR code C of length m and dimension s. Then
any linear k-server PIR protocol P can be emulated by a coded PIR protocol P∗
with s parts and m shares, having communication complexity:

U
(
P∗; n

)
6 m

k
U(P ; n/s) + m log k and D

(
P∗; n

)
6 m

k
D(P ; n/s)

Proof. On the upload side, the number of queries increases from k to m,
but each query is shorter as it is generated by Q(k, n/s; i) rather than Q(k, n; i).
On the download side, the number of answers also increases from k to m. �



Summary of our results so far
We have shown that:

existing k-server linear PIR protocol P
+

k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s
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work? Why does everything cancel out?"
For which m, s, and k do coded k-server PIR
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What about the communication complex-
ity of coded PIR schemes? "

How small can we make the storage
overhead ratio m/s?

We have shown that:
existing k-server linear PIR protocol P

+
k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



New problem: High-rate PIR codes
According to our construction, coded PIR schemes exist whenever PIR codes
exist. The storage overhead of such coded PIR schemes is completely deter-
mined by the rate of the underlying PIR code.

Open Problem: Given positive integers s and k, deter-
mine the smallest m such that there exists a k-server PIR code
of length m and dimension s.

M(s, k) def= Shortest possible length m of
a k-server PIR code of dimension s

ρ(s, k) def= Smallest possible redundancy of
a k-server PIR code of dimension s

With this notation:

storage overhead =
M(s, k)

s = 1 +
ρ(s, k)

s

We have converted a PIR problem to a coding theory problem!
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ρ(s, k) def= Smallest possible redundancy of
a k-server PIR code of dimension s
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storage overhead =
M(s, k)

s = 1 +
ρ(s, k)
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Optimal solution for two servers
For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s, 2) = s + 1 ρ(s, 2) = 1

Why is this true? The encoding of each message x = (x1, x2, . . . , xs)
consists of appending an overall parity bit

c = x1 + x2 + · · ·+ xs

Thus for all i∈ [s], we have xi = x1 + · · ·+ xi−1 + c + xi+1 + · · ·+ xs. This
corresponds to two disjoint recovery setsR1 = {i} andR2 = [s + 1]\{i}.

Theorem 5: PIR without storage overhead
For all ε > 0 it is possible to achieve information-theoretic PIR with com-
munication complexity no(1) by storing at most (1 + ε)n bits.

Proof. Take s = 1/ε, and combine our results for k = 2 with the results of
Dvir-Gopi on 2-server PIR with subpolynomial communication. �
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PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes
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The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i.

Then:
yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.
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PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Proof. It is easy to see that a systematic generator matrix G for C has pro-
perty Pk with k = J + 1. Since G is systematic, the column in position i is ei.

G =

R1

ei

R2 · · · RJ−1 RJ

11. . .1 1
1 11 . . .1...

. . .
1 11 . . .1
1 11 . . .1

 J codewords of C⊥

Thus {ei} andR1,R2, . . . ,RJ are disjoint sets of columns of G that add to ei. �
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PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Numerous algebraic constructions of cyclic majority-logic decodable codes are
known. For example, Reed-Muller codes, BCH codes, and other codes invariant
under the group of affine permutations:

αi 7→ βαi + γ for all i = 0, 1, . . . , 2m−2 and β,γ∈ GF(2m)

T. Kasami, S. Lin, and W.W. Peterson, Some results on cyclic codes which are invariant
under the affine group, Information and Control, vol. 2, pp. 475–496, November 1968.

Theorem: Doubly-transitive majority-logic codes
Let n = 22ab−1 and let C be a binary cyclic code of length n and co-dimension
(2b+1−1)a − 1. Then C is majority-logic decodable with parameter J = 2a + 1.

As a corollary to this theorem and Lemma 7, whenever the number of servers is
of the form k = 4, 6, 10, . . . , 2a + 2, we have:

ρ(s, k) = O
(√

s
)
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Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Proof. Given i∈ [s], find k− 1 subsets inA that contain i. W.l.o.g., suppose these
subsets are A1, A2, . . . , Ak−1. Let A′j = Aj \ {i} for all j. Then the sets A′1, A′2, . . . , A′k−1
are disjoint. These sets give rise to k disjoint recovery equations:

xi = c1 + ∑
j∈A′1

xj = c2 + ∑
j∈A′2

xj = · · · = ck−1 + ∑
j∈A′k−1

xj

�

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.
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PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example:

Fano plane S(2, 3, 7)

1 2 3 4 5 6 7

B1: • • • −−−−
B2: − • − • − • −
B3: • −− • • −−
B4: • −−−− • •
B5: − • −− • − •
B6: −− • • −− •
B7: −− • − • • −

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k
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PIR codes from bipartite graphs
Let G = (U,V; E) be a bipartite graph, with bipartition U,V and edge set E . We
consider the neighborhoods N(v) = {u∈U : (u, v)∈ E} of vertices in V.

Lemma 11: PIR codes from bipartite graphs
If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v∈V}, form an almost disjoint k-cover of U, where k = minu∈U deg(u).

Proof. Assume to the contrary that there are vertices v1, v2 ∈V such that
|N(v1)∩N(v2)| > 2. Let u1, u2 be some two vertices in N(v1)∩N(v2). Then the
induced subgraph on {v1, v2, u1, u2} is K2,2 which is a 4-cycle in G. �

Given s and k, we would like to construct a bipartite graph G = (U,V; E)
with the following properties:

|U| = s minu∈U deg(u) = k− 1 girth(G) > 6

If we can do this, then ρ(s, k) 6 |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph?

Using the best known results
on bipartite cages, we get:

ρ(s, k) = O
(√

s
)

for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.
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PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:
Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.
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Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

To learn more about constant-weight codes and their properties, consult the fol-
lowing papers:

Ch. Bachoc, V. Chandar, G.D. Cohen, P. Solé, and A. Tchamkerten, On bounded
weight codes, IEEE Trans. Information Theory, 57, pp. 6780–6787, October 2011.

G.D. Cohen, P. Solé, and A. Tchamkerten, Heavy weight codes, Proceedings IEEE
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Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22
3 1 3 4 7 8 10 11 14 15 17 18 21 22 24 25
4 1 4 5 7 8 10 11 15 16 19 20 22 23 25 26
5 1 4 5 7 8 13 14 17 18 20 21 23 24 25 26
6 1 4 5 7 8 14 15 18 19 21 22 28 29 32 33
7 1 5 6 7 8 15 16 20 21 22 23 30 31 35 36
8 1 5 6 11 12 15 16 24 25 29 30 35 36 39 40
9 1 5 6 12 13 15 16 25 26 30 31 37 38 40 41

10 1 5 6 13 14 15 16 26 27 31 32 39 40 41 42
11 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
12 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
13 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
14 1 6 7 14 15 21 22 30 31 37 38 39 40 41 42
15 1 6 7 15 16 21 22 30 31 37 38 39 40 41 42
16 1 7 8 16 17 21 22 30 31 45 46 51 52 55 56
17 1 7 8 16 17 21 22 30 31 46 47 55 56 60 61
18 1 7 8 16 17 21 22 30 31 47 48 56 57 61 62
19 1 7 8 16 17 21 22 30 31 48 49 57 58 62 63
20 1 7 8 16 17 21 22 30 31 49 50 58 59 63 64
21 1 7 8 18 19 27 28 30 31 52 53 59 60 70 71
22 1 8 9 18 19 28 29 30 31 53 54 61 62 71 72
23 1 8 9 19 20 28 29 30 31 54 55 62 63 73 74
24 1 8 9 19 20 28 29 30 31 55 56 63 64 74 75
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Redundancy ρ(s, k) of the best-known PIR codes
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Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00
2 1.50 2.50 3.00 4.00 4.50 5.50 6.00 7.00 7.50 8.50 9.00 10.00 10.50 11.50 12.00
3 1.33 2.00 2.33 3.33 3.67 4.33 4.67 5.67 6.00 6.67 7.00 8.00 8.33 9.00 9.33
4 1.25 2.00 2.25 2.75 3.00 3.50 3.75 4.75 5.00 5.75 6.00 6.50 6.75 7.25 7.50
5 1.20 1.80 2.00 2.40 2.60 3.60 3.80 4.40 4.60 5.00 5.20 5.60 5.80 6.00 6.20
6 1.17 1.67 1.83 2.17 2.33 3.33 3.50 4.00 4.17 4.50 4.67 5.67 5.83 6.33 6.50
7 1.14 1.71 1.86 2.00 2.14 3.14 3.29 3.86 4.00 4.14 4.29 5.29 5.43 6.00 6.14
8 1.13 1.63 1.75 2.38 2.50 2.88 3.00 4.00 4.13 4.63 4.75 5.38 5.50 5.88 6.00
9 1.11 1.56 1.67 2.33 2.44 2.67 2.78 3.78 3.89 4.33 4.44 5.11 5.22 5.44 5.56

10 1.10 1.50 1.60 2.30 2.40 2.50 2.60 3.60 3.70 4.10 4.20 4.90 5.00 5.10 5.20
11 1.09 1.55 1.64 2.18 2.27 2.91 3.00 3.73 3.82 4.36 4.45 4.55 4.64 4.73 4.82
12 1.08 1.50 1.58 2.08 2.17 2.75 2.83 3.50 3.58 4.08 4.17 4.25 4.33 4.42 4.50
13 1.08 1.46 1.54 2.00 2.08 2.62 2.69 3.31 3.38 3.85 3.92 4.00 4.08 4.15 4.23
14 1.07 1.43 1.50 2.00 2.07 2.50 2.57 3.14 3.21 3.64 3.71 3.79 3.86 3.93 4.00
15 1.07 1.40 1.47 2.00 2.07 2.40 2.47 3.00 3.07 3.47 3.53 3.60 3.67 3.73 3.80
16 1.06 1.44 1.50 2.00 2.06 2.31 2.38 2.88 2.94 3.81 3.88 4.19 4.25 4.44 4.50
17 1.06 1.41 1.47 1.94 2.00 2.24 2.29 2.76 2.82 3.71 3.76 4.24 4.29 4.53 4.59
18 1.06 1.39 1.44 1.89 1.94 2.17 2.22 2.67 2.72 3.61 3.67 4.11 4.17 4.39 4.44
19 1.05 1.37 1.42 1.84 1.89 2.11 2.16 2.58 2.63 3.53 3.58 4.00 4.05 4.26 4.32
20 1.05 1.35 1.40 1.80 1.85 2.05 2.10 2.50 2.55 3.45 3.50 3.90 3.95 4.15 4.20
21 1.05 1.33 1.38 1.86 1.90 2.29 2.33 2.43 2.48 3.48 3.52 3.81 3.86 4.33 4.38
22 1.05 1.36 1.41 1.82 1.86 2.27 2.32 2.36 2.41 3.41 3.45 3.77 3.82 4.23 4.27
23 1.04 1.35 1.39 1.83 1.87 2.22 2.26 2.30 2.35 3.35 3.39 3.70 3.74 4.17 4.22
24 1.04 1.33 1.38 1.79 1.83 2.17 2.21 2.25 2.29 3.29 3.33 3.63 3.67 4.08 4.13
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Storage overhead of the best-known PIR codes
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Thank you for your attention!

Please send you queries...


