
PrivateInformationRetrieval:
Coding instead of Replication

Alexander Vardy
Information Theory & Applications Center

University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA

Jont work with:



What is private information retrieval?
x = (x1, x2, . . . , xn) xi =

Alice

Queries

Answers

Private information retrieval (PIR)
Alice wishes to retrieve a data item xi from the database (x1, x2, . . . , xn)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.

Naive

Solution: Ask the server to send the entire database!

This is the only solution possible! Communication cost = Ω(n).

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.



What is private information retrieval?
x = (x1, x2, . . . , xn) xi =

Alice

Queries

Answers

Private information retrieval (PIR)
Alice wishes to retrieve a data item xi from the database (x1, x2, . . . , xn)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.
Naive Solution: Ask the server to send the entire database!

This is the only solution possible! Communication cost = Ω(n).

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.



What is private information retrieval?
x = (x1, x2, . . . , xn) xi =

Alice

Queries

Answers

Private information retrieval (PIR)
Alice wishes to retrieve a data item xi from the database (x1, x2, . . . , xn)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.

Naive

Solution: Ask the server to send the entire database!

This is the only solution possible! Communication cost = Ω(n).

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.



Two general classes of solutions

Computational PIR
The server is computationally bounded + standard cryptographic
assumptions (one-way functions, quadratic residuosity).

E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database, computationally-private
information retrieval, Proc. 38-th IEEE Symp. Foundations Computer Science, pp. 364–373, October 1997.

Information-theoretic PIR
The database is replicated among k > 2 non-communicating serv-
ers, with guarantees of information-theoretic privacy.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,
Private information retrieval, Proc. 36-th IEEE Symposium

Foundations Computer Science, pp. 41–50, October 1995.

This talk: We consider only information-theoretic PIR!



Two general classes of solutions

Computational PIR
The server is computationally bounded + standard cryptographic
assumptions (one-way functions, quadratic residuosity).

E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database, computationally-private
information retrieval, Proc. 38-th IEEE Symp. Foundations Computer Science, pp. 364–373, October 1997.

Information-theoretic PIR
The database is replicated among k > 2 non-communicating serv-
ers, with guarantees of information-theoretic privacy.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,
Private information retrieval, Proc. 36-th IEEE Symposium

Foundations Computer Science, pp. 41–50, October 1995.

This talk: We consider only information-theoretic PIR!



Information-theoretic PIR: Example
Replication among k = 4 servers S1,S2,S3,S4 with communication cost
of 8
√

n + 4 bits. The database is represented as a square of side
√

n.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.

Query generation:
Alice wishes to retrieve xs,t. She generates the vectors
y, z∈{0, 1}

√
n uniformly at random, and sends

S1 ← (y, z), S2 ← (y + es, z),
S3 ← (y, z + et), S4 ← (y + es, z + et)

√
n

√
n

•
xs,t

s

t

Answer computation:
u

v

Given a query (u, v), each server Si returns the
following:

a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j



Information-theoretic PIR: Example
Replication among k = 4 servers S1,S2,S3,S4 with communication cost
of 8
√

n + 4 bits. The database is represented as a square of side
√

n.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.

Query generation:
Alice wishes to retrieve xs,t. She generates the vectors
y, z∈{0, 1}

√
n uniformly at random, and sends

S1 ← (y, z), S2 ← (y + es, z),
S3 ← (y, z + et), S4 ← (y + es, z + et)

√
n

√
n

•
xs,t

s

t

Answer computation:
u

v

Given a query (u, v), each server Si returns the
following:

a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j



Information-theoretic PIR: Example
Replication among k = 4 servers S1,S2,S3,S4 with communication cost
of 8
√

n + 4 bits. The database is represented as a square of side
√

n.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp. 41–50, October 1995.

Query generation:
Alice wishes to retrieve xs,t. She generates the vectors
y, z∈{0, 1}

√
n uniformly at random, and sends

S1 ← (y, z), S2 ← (y + es, z),
S3 ← (y, z + et), S4 ← (y + es, z + et)

√
n

√
n

•
xs,t

s

t

Answer computation:
u

v

Given a query (u, v), each server Si returns the
following:

a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j



Information-theoretic PIR: Example
Query generation:
S1 ← (y, z), S2 ← (y + es, z), S3 ← (y, z + et), S4 ← (y + es, z + et)

Answer computation:
a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j

Reconstruction:

a1

s��������������������������������������������������������������
�������������������������������
�������������������������������

a2

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

a3

s

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���

a4

1 The bit xs,t contributes to exactly one of the answers a1, a2, a3, a4.
2 All other bits in the database contribute an even number of times.

It follows from 1 and 2 that: a1 + a2 + a3 + a4 = xs,t



Information-theoretic PIR: Example
Query generation:
S1 ← (y, z), S2 ← (y + es, z), S3 ← (y, z + et), S4 ← (y + es, z + et)

Answer computation:
a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j

Reconstruction:

a1

s��������������������������������������������������������������
�������������������������������
�������������������������������

a2

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

a3

s

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���

a4

1 The bit xs,t contributes to exactly one of the answers a1, a2, a3, a4.

2 All other bits in the database contribute an even number of times.

It follows from 1 and 2 that: a1 + a2 + a3 + a4 = xs,t



Information-theoretic PIR: Example
Query generation:
S1 ← (y, z), S2 ← (y + es, z), S3 ← (y, z + et), S4 ← (y + es, z + et)

Answer computation:
a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j

Reconstruction:

a1

s��������������������������������������������������������������
�������������������������������
�������������������������������

a2

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

a3

s

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���

a4

1 The bit xs,t contributes to exactly one of the answers a1, a2, a3, a4.
2 All other bits in the database contribute an even number of times.

It follows from 1 and 2 that: a1 + a2 + a3 + a4 = xs,t



Information-theoretic PIR: Example
Query generation:
S1 ← (y, z), S2 ← (y + es, z), S3 ← (y, z + et), S4 ← (y + es, z + et)

Answer computation:
a = ∑ i∈supp(u) ∑ j∈supp(v) xi,j

Reconstruction:

a1

s��������������������������������������������������������������
�������������������������������
�������������������������������

a2

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

a3

s

t

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���

a4

1 The bit xs,t contributes to exactly one of the answers a1, a2, a3, a4.
2 All other bits in the database contribute an even number of times.

It follows from 1 and 2 that: a1 + a2 + a3 + a4 = xs,t



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



Progress in information-theoretic PIR
During the past 20 years, the communication cost of information-theo-
retic PIR has been reduced dramatically by many researchers:

# of
Servers

Communication
Complexity Year Reference

2 O
(

n
1
3

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1
k

)
1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

k O
(

n
1

2k−1

)
1997 A. Ambainis

k O
(

n
log log k
k log k

)
2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

k > 3 nO
(√

log log n
log n

)
2008 S. Yekhanin; K. Efremenko

2 nO
(√

log log n
log n

)
2014 Z. Dvir and S. Gopi

Note: Dvir-Gopi protocol gives an even better communication cost for large k.



What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?



What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?



What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?



What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?



What about storage overhead?
In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

storage overhead def=
total number of bits stored on all the servers

number of bits in the database

The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k > 3 to k = 2, for the same complexity.

Should we be happy with k = 2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is Ω(n) unless the database is replicated on
at least two non-communicating servers.

Or is it?



This talk: The main theme

This is cryptography, people!
We do the impossible

for breakfast.

Open Problem: Can we achieve information-theoretic
PIR with low communication cost but without doubling
(or worse if k > 3) the number of bits we need to store?

Taking cue from distributed storage: In practice, the database may need
to be stored in a distributed manner (e.g., for security or reliability purposes).

Key idea: Partitioning the database
Partition the database string x into parts x1, x2, . . . , xs. We will use m > k
non-communicating servers. But each server will store only part of the
database, so that the total number of bits stored is (1 + ε)n.



This talk: The main theme

This is cryptography, people!
We do the impossible

for breakfast.

Open Problem: Can we achieve information-theoretic
PIR with low communication cost but without doubling
(or worse if k > 3) the number of bits we need to store?

Taking cue from distributed storage: In practice, the database may need
to be stored in a distributed manner (e.g., for security or reliability purposes).

Key idea: Partitioning the database
Partition the database string x into parts x1, x2, . . . , xs. We will use m > k
non-communicating servers. But each server will store only part of the
database, so that the total number of bits stored is (1 + ε)n.



This talk: The main theme

This is cryptography, people!
We do the impossible

for breakfast.

Open Problem: Can we achieve information-theoretic
PIR with low communication cost but without doubling
(or worse if k > 3) the number of bits we need to store?

Taking cue from distributed storage: In practice, the database may need
to be stored in a distributed manner (e.g., for security or reliability purposes).

Key idea: Partitioning the database
Partition the database string x into parts x1, x2, . . . , xs. We will use m > k
non-communicating servers. But each server will store only part of the
database, so that the total number of bits stored is (1 + ε)n.



Conventional k-server PIR
Definition: k-server PIR scheme
A k-server PIR scheme consists of the following: a binary string x of length n,
called the database, k non-communicating servers S1,S2, . . . ,Sk each storing
a replica of x, a user Alice who wishes to retrieve xi for some i ∈ [n], without
revealing i to any of the servers, and a k-server PIR protocol.

Definition: k-server PIR protocol [CKGS95]
The k-server PIR protocol P involves a triple of algorithms Q, A, C and con-
sists of the following steps:

1 Alice flips coins and uses the random outcome to invoke the query al-
gorithm Q(k, n; i) that generates a k-tuple of queries q1, q2, . . . , qk.

2 For all j∈ [k], Alice sends the query qj to the j-th server Sj.
3 For all j∈ [k], the server Sj invokes the answer algorithmA to respond

with the answer aj = A(k, j; x, qj).
4 Alice computes xi using the reconstruction algorithm C(k, n; i, a1, . . . , ak).

The three algorithms together satisfy the correctness (C(k, n; i, a1, . . . , ak) = xi)
and the privacy (distibution of qj independent of i ) conditions defined earlier.



Conventional k-server PIR: Linearity
Our construction of distributed PIR schemes with low
storage overhead uses two main ingredients:

1 A binary linear code C with a certain special
property, to be defined shortly.

2 An existing k-server PIR protocol in which the
answer algorithm is linear in the database.

Definition: Linear k-server PIR protocol
A k-server PIR protocol P

(
Q,A, C

)
is linear if for all x1, x2 ∈{0,1}n

and for all possible queries q, the following holds:

A(k, j; x1 + x2, q) = A(k, j; x1, q) + A(k, j; x2, q) for all j∈ [k]

Good news: All known PIR protocols are linear!

Note: We also assume that the answer algorithmA is public knowledge. This
means that any server can simulate the answers of any other server.



Conventional k-server PIR: Linearity
Our construction of distributed PIR schemes with low
storage overhead uses two main ingredients:

1 A binary linear code C with a certain special
property, to be defined shortly.

2 An existing k-server PIR protocol in which the
answer algorithm is linear in the database.

Definition: Linear k-server PIR protocol
A k-server PIR protocol P

(
Q,A, C

)
is linear if for all x1, x2 ∈{0,1}n

and for all possible queries q, the following holds:

A(k, j; x1 + x2, q) = A(k, j; x1, q) + A(k, j; x2, q) for all j∈ [k]

Good news: All known PIR protocols are linear!

Note: We also assume that the answer algorithmA is public knowledge. This
means that any server can simulate the answers of any other server.



Conventional k-server PIR: Linearity
Our construction of distributed PIR schemes with low
storage overhead uses two main ingredients:

1 A binary linear code C with a certain special
property, to be defined shortly.

2 An existing k-server PIR protocol in which the
answer algorithm is linear in the database.

Definition: Linear k-server PIR protocol
A k-server PIR protocol P

(
Q,A, C

)
is linear if for all x1, x2 ∈{0,1}n

and for all possible queries q, the following holds:

A(k, j; x1 + x2, q) = A(k, j; x1, q) + A(k, j; x2, q) for all j∈ [k]

Good news: All known PIR protocols are linear!

Note: We also assume that the answer algorithmA is public knowledge. This
means that any server can simulate the answers of any other server.



Example: Coded 3-server PIR
Example: Reducing the storage overhead of 3-server PIR
Consider any existing 3-server PIR protocol P

(
Q,A, C

)
, and assume it

is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length n into 4 parts x1, x2, x3, x4, each of
length n/4. These parts are distributed among 8 servers as follows:

S1: c1 = x1 S5: c5 = x1 + x2
S2: c2 = x2 S6: c6 = x2 + x3
S3: c3 = x3 S7: c7 = x3 + x4
S4: c4 = x4 S8: c8 = x4 + x1

(?)

The result is a coded PIR scheme with s = 4 parts x1, x2, x3, x4 and m = 8
coded shares c1, c2, c3, c4, c5, c6, c7, c8.

storage overhead =
n/s bits stored on m servers

n bits in the database
=

m
s



Example: Coded 3-server PIR
Example: Reducing the storage overhead of 3-server PIR
Consider any existing 3-server PIR protocol P

(
Q,A, C

)
, and assume it

is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length n into 4 parts x1, x2, x3, x4, each of
length n/4. These parts are distributed among 8 servers as follows:

S1: c1 = x1 S5: c5 = x1 + x2
S2: c2 = x2 S6: c6 = x2 + x3
S3: c3 = x3 S7: c7 = x3 + x4
S4: c4 = x4 S8: c8 = x4 + x1

(?)

The result is a coded PIR scheme with s = 4 parts x1, x2, x3, x4 and m = 8
coded shares c1, c2, c3, c4, c5, c6, c7, c8.

storage overhead =
n/s bits stored on m servers

n bits in the database
=

m
s



Example: Coded 3-server PIR
Example: Reducing the storage overhead of 3-server PIR
Consider any existing 3-server PIR protocol P

(
Q,A, C

)
, and assume it

is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length n into 4 parts x1, x2, x3, x4, each of
length n/4. These parts are distributed among 8 servers as follows:

S1: c1 = x1 S5: c5 = x1 + x2
S2: c2 = x2 S6: c6 = x2 + x3
S3: c3 = x3 S7: c7 = x3 + x4
S4: c4 = x4 S8: c8 = x4 + x1

(?)

The result is a coded PIR scheme with s = 4 parts x1, x2, x3, x4 and m = 8
coded shares c1, c2, c3, c4, c5, c6, c7, c8.

storage overhead =
n/s bits stored on m servers

n bits in the database
=

m
s



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i).
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i).
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i).
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i).
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)
a′3 = a4 + a8 = A(3, 3; x4, q3) +A(3, 3; x4 + x1, q3) = A(3, 3; x1, q3)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q1, q2, q3, q3, q2, q2, q3, q3)
3 Alice ignores the answers from S3,S6,S7 but collects the other five

answers as follows:
Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)
a′3 = a4 + a8 = A(3, 3; x4, q3) +A(3, 3; x4 + x1, q3) = A(3, 3; x1, q3)



Example: How to retrieve xi?
Assume, for now, that Alice wishes to read the i-th bit from the first part x1.
That is, she wants the bit x1,i for some i∈ [n/4]. She proceeds as follows:

3 Alice ignores the answers from S3,S6,S7 but collects the other five
answers as follows:

Server Query Response
S1 q1 a1 = A(3, 1; c1, q1) = A(3, 1; x1, q1)
S2 q2 a2 = A(3, 2; c2, q2) = A(3, 2; x2, q2)
S4 q3 a4 = A(3, 3; c4, q3) = A(3, 3; x4, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S8 q3 a8 = A(3, 3; c5, q3) = A(3, 3; x4 + x1, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a2 + a5 = A(3, 2; x2, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x1, q2)
a′3 = a4 + a8 = A(3, 3; x4, q3) +A(3, 3; x4 + x1, q3) = A(3, 3; x1, q3)

5 Using the reconstruction algorithm of P
(
Q,A, C

)
, Alice now com-

putes C
(
3, n/4; i, a1, a′2, a′3

)
, which is given by:

C
(
3, n/4; i,A(3, 1; x1, q1),A(3, 2; x1, q2),A(3, 3; x1, q3)

)
= x1,i



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i), exactly as before.
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q2, q1, q3, q3, q2, q3, q3, q3)
3 Alice ignores the answers from S4,S7,S8 but collects the other five

answers as follows:
Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i), exactly as before.
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q2, q1, q3, q3, q2, q3, q3, q3)
3 Alice ignores the answers from S4,S7,S8 but collects the other five

answers as follows:
Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i), exactly as before.
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q2, q1, q3, q3, q2, q3, q3, q3)
3 Alice ignores the answers from S4,S7,S8 but collects the other five

answers as follows:
Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

1 Alice flips coins and invokes the query algorithm of P
(
Q,A, C

)
to

generate three queries q1, q2, q3 := Q(3, n/4; i), exactly as before.
2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q2, q1, q3, q3, q2, q3, q3, q3)
3 Alice ignores the answers from S4,S7,S8 but collects the other five

answers as follows:
Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

2 She sends queries to the 8 servers as follows:

(S1,S2,S3,S4,S5,S6,S7,S8) ← (q2, q1, q3, q3, q2, q3, q3, q3)
3 Alice ignores the answers from S4,S7,S8 but collects the other five

answers as follows:
Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)
a′3 = a3 + a6 = A(3, 3; x3, q3) +A(3, 3; x2 + x3, q3) = A(3, 3; x2, q3)



Example: How to retrieve xi?
Now assume that Alice wishes to read the i-th bit from the second part x2.
That is, she wants the bit x2,i for some i∈ [n/4]. She proceeds as follows:

3 Alice ignores the answers from S4,S7,S8 but collects the other five
answers as follows:

Server Query Response
S1 q2 a1 = A(3, 2; c1, q2) = A(3, 2; x1, q2)
S2 q1 a2 = A(3, 1; c2, q1) = A(3, 1; x2, q1)
S3 q3 a3 = A(3, 3; c3, q3) = A(3, 3; x3, q3)
S5 q2 a5 = A(3, 2; c5, q2) = A(3, 2; x1 + x2, q2)
S6 q3 a6 = A(3, 3; c6, q3) = A(3, 3; x2 + x3, q3)

4 Since the answer algorithm of P
(
Q,A, C

)
is linear in the database,

Alice can compute:
a′2 = a1 + a5 = A(3, 2; x1, q2) +A(3, 2; x1 + x2, q2) = A(3, 2; x2, q2)
a′3 = a3 + a6 = A(3, 3; x3, q3) +A(3, 3; x2 + x3, q3) = A(3, 3; x2, q3)

5 Using the reconstruction algorithm of P
(
Q,A, C

)
, Alice now com-

putes C
(
3, n/4; i, a2, a′2, a′3

)
, which is given by:

C
(
3, n/4; i,A(3, 1; x2, q1),A(3, 2; x2, q2),A(3, 3; x2, q3)

)
= x2,i



Coded k-server PIR: Definition
Definition: Coded k-server PIR scheme
A coded k-server PIR scheme with s parts and m shares consists of the
following ingredients:

A binary string x of length n, called the database, that is partiti-
oned into s parts x1, x2, . . . , xs, each of length n/s.
Coded shares c1, c2, . . . , cm of length n/s, where cj is a linear fun-
ction of x1, x2, . . . , xs for all j∈ [m], stored in m non-communicat-
ing servers S1,S2, . . . ,Sm.
A user Alice who wishes to retrieve xi for some i∈ [n], without
revealing i to any of the servers.

A coded k-server PIR protocol P∗
(
Q∗,A∗, C∗

)
that emulates a con-

ventional k-server PIR protocol P(Q,A, C).

Note: The emulation property of P∗
(
Q∗,A∗, C∗

)
can be formally defined.

Theorem 1: Storage overhead of coded PIR
The storage overhead of a coded k-server PIR scheme
with s parts and m coded shares is m/s.



Coded k-server PIR: Definition
Definition: Coded k-server PIR scheme
A coded k-server PIR scheme with s parts and m shares consists of the
following ingredients:

A binary string x of length n, called the database, that is partiti-
oned into s parts x1, x2, . . . , xs, each of length n/s.
Coded shares c1, c2, . . . , cm of length n/s, where cj is a linear fun-
ction of x1, x2, . . . , xs for all j∈ [m], stored in m non-communicat-
ing servers S1,S2, . . . ,Sm.
A user Alice who wishes to retrieve xi for some i∈ [n], without
revealing i to any of the servers.

A coded k-server PIR protocol P∗
(
Q∗,A∗, C∗

)
that emulates a con-

ventional k-server PIR protocol P(Q,A, C).

Note: The emulation property of P∗
(
Q∗,A∗, C∗

)
can be formally defined.

Theorem 1: Storage overhead of coded PIR
The storage overhead of a coded k-server PIR scheme
with s parts and m coded shares is m/s.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



General coded PIR schemes?
So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

Why does the bit retrieval in the
example work? Why does every-
thing nicely cancel out?

For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

What about their communication
complexity?

How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



The example revisited
In the encoding equations (?) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1 = x1, c3 = x3, c5 = x1 + x2, c7 = x3 + x4
c2 = x2, c4 = x4, c6 = x2 + x3, c8 = x4 + x1

Rewrite these equations in matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8) = (x1, x2, x3, x4)

 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Observe that each part x1, x2, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

x1 = c1 = c5 + c2 = c8 + c4
x2 = c2 = c5 + c1 = c6 + c3
x3 = c3 = c6 + c3 = c7 + c4
x4 = c4 = c7 + c3 = c8 + c1

Moreover, each coded share c1, c2, c3, c4, c5, c6, c7, c8 appears in each of the
four recovery equations above no more than once.



The example revisited
In the encoding equations (?) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1 = x1, c3 = x3, c5 = x1 + x2, c7 = x3 + x4
c2 = x2, c4 = x4, c6 = x2 + x3, c8 = x4 + x1

Rewrite these equations in matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8) = (x1, x2, x3, x4)

 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Observe that each part x1, x2, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

x1 = c1 = c5 + c2 = c8 + c4
x2 = c2 = c5 + c1 = c6 + c3
x3 = c3 = c6 + c3 = c7 + c4
x4 = c4 = c7 + c3 = c8 + c1

Moreover, each coded share c1, c2, c3, c4, c5, c6, c7, c8 appears in each of the
four recovery equations above no more than once.



The example revisited
In the encoding equations (?) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1 = x1, c3 = x3, c5 = x1 + x2, c7 = x3 + x4
c2 = x2, c4 = x4, c6 = x2 + x3, c8 = x4 + x1

Rewrite these equations in matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8) = (x1, x2, x3, x4)

 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Observe that each part x1, x2, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

x1 = c1 = c5 + c2 = c8 + c4
x2 = c2 = c5 + c1 = c6 + c3
x3 = c3 = c6 + c3 = c7 + c4
x4 = c4 = c7 + c3 = c8 + c1

Moreover, each coded share c1, c2, c3, c4, c5, c6, c7, c8 appears in each of the
four recovery equations above no more than once.



The example revisited
In the encoding equations (?) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1 = x1, c3 = x3, c5 = x1 + x2, c7 = x3 + x4
c2 = x2, c4 = x4, c6 = x2 + x3, c8 = x4 + x1

Rewrite these equations in matrix form:

(c1, c2, c3, c4, c5, c6, c7, c8) = (x1, x2, x3, x4)

 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Observe that each part x1, x2, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

x1 = c1 = c5 + c2 = c8 + c4
x2 = c2 = c5 + c1 = c6 + c3
x3 = c3 = c6 + c3 = c7 + c4
x4 = c4 = c7 + c3 = c8 + c1

Moreover, each coded share c1, c2, c3, c4, c5, c6, c7, c8 appears in each of the
four recovery equations above no more than once.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3

Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1



w e1 =

1
0
0
0

 =

1
1
0
0

+

0
1
0
0

 =

1
0
0
1

+

0
0
0
1



Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 w e1 =

1
0
0
0

 =

1
1
0
0

+

0
1
0
0

 =

1
0
0
1

+

0
0
0
1


Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 w e2 =

0
1
0
0

 =

1
1
0
0

+

1
0
0
0

 =

0
1
1
0

+

0
0
1
0


Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 w e3 =

0
0
1
0

 =

0
0
1
1

+

0
0
0
1

 =

0
1
1
0

+

0
1
0
0


Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 w e4 =

0
0
0
1

 =

0
0
1
1

+

0
0
1
0

 =

1
0
0
1

+

1
0
0
0


Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



PIR matrix and PIR codes
Definition: k-server PIR matrix
Let ei denote the binary unit vector with 1 in position i and zeros elsewhere.
An s×m binary matrix G is said to have property Pk if for all i∈ [s] there exist
k disjoint sets of columns of G that add to ei. A matrix that has property Pk
is also said to be a k-server PIR matrix.

Example: 4× 8 matrix with property P3 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 w e4 =

0
0
0
1

 =

0
0
1
1

+

0
0
1
0

 =

1
0
0
1

+

1
0
0
0


Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code
A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Pk.



Recovery equations from PIR codes
Lemma 2: Disjoint recovery sets
Let C be a k-server PIR code and let G be an s×m generator matrix for C with
property Pk. Let c = xG be the encoding of a message x = (x1, x2, . . . , xs). Then
for all i∈ [s], there exist k disjoint recovery setsR1,R2, . . . ,Rk such that

xi = ∑
j∈R1

cj = ∑
j∈R2

cj = · · · = ∑
j∈Rk

cj

Proof. Let g1, g2, . . . , gm denote the columns of G. Then c = xG can be writ-
ten in terms of the inner products of these columns with x, as follows:

c = (c1, c2, . . . , cm) = (〈x, g1〉, 〈x, g2〉 , . . . , 〈x, gm〉)

Now suppose that for some set of indices R =
{

j1, j2, . . . , jr
}
⊆ [m], the corres-

ponding columns of G add to the unit vector ei. Then

cj1+ · · ·+ cjr =
〈
x, gj1

〉
+ · · ·+

〈
x, gjr

〉
=

〈
x, gj1+ · · ·+ gjr

〉
= 〈x, ei〉 = xi

It follows from the above that the recovery setsR1,R2, . . . ,Rk⊆ [m], are simply
the indices of the disjoint sets of columns of G that add up to ei. �



Recovery equations from PIR codes
Lemma 2: Disjoint recovery sets
Let C be a k-server PIR code and let G be an s×m generator matrix for C with
property Pk. Let c = xG be the encoding of a message x = (x1, x2, . . . , xs). Then
for all i∈ [s], there exist k disjoint recovery setsR1,R2, . . . ,Rk such that

xi = ∑
j∈R1

cj = ∑
j∈R2

cj = · · · = ∑
j∈Rk

cj

Proof. Let g1, g2, . . . , gm denote the columns of G. Then c = xG can be writ-
ten in terms of the inner products of these columns with x, as follows:

c = (c1, c2, . . . , cm) = (〈x, g1〉, 〈x, g2〉 , . . . , 〈x, gm〉)

Now suppose that for some set of indices R =
{

j1, j2, . . . , jr
}
⊆ [m], the corres-

ponding columns of G add to the unit vector ei. Then

cj1+ · · ·+ cjr =
〈
x, gj1

〉
+ · · ·+

〈
x, gjr

〉
=

〈
x, gj1+ · · ·+ gjr

〉
= 〈x, ei〉 = xi

It follows from the above that the recovery setsR1,R2, . . . ,Rk⊆ [m], are simply
the indices of the disjoint sets of columns of G that add up to ei. �



Construction of coded PIR schemes
Theorem 3: Coded PIR schemes from PIR codes
Suppose there exists a k-server PIR code C of length m and dimension s and
a k-server linear PIR protocolP(Q,A,C). Then there exists a coded PIR scheme
with s parts and m shares along with the corresponding coded PIR protocol.

Proof. Let G be a generator matrix for C with property Pk. Then the coded
shares are computed from the database parts x1, x2, . . . , xs as follows:

(c1, c2, . . . , cm) = (x1, x2, . . . , xs) G

Assume Alice wishes to read the i-th bit from the `-th part of the database,
namely the bit x`,i for some i∈ [n/s]. She will proceed as follows.

1 Alice invokes the query algorithm of P(Q,A, C) to generate k random-
ized queries q1, q2, . . . , qk := Q(k, n/s; i).

2 She next finds k disjoint recovery setsR1,R2, . . . ,Rk ⊆ [m] such that

x` = ∑j∈R1
cj = ∑j∈R2

cj = · · · = ∑j∈Rk
cj

Such sets exist by Lemma 2. They are used to determine how to assign
the queries q1, q2, . . . , qk to the servers S1,S2, . . . ,Sm.



Construction of coded PIR schemes
Theorem 3: Coded PIR schemes from PIR codes
Suppose there exists a k-server PIR code C of length m and dimension s and
a k-server linear PIR protocolP(Q,A,C). Then there exists a coded PIR scheme
with s parts and m shares along with the corresponding coded PIR protocol.

Proof. Let G be a generator matrix for C with property Pk. Then the coded
shares are computed from the database parts x1, x2, . . . , xs as follows:

(c1, c2, . . . , cm) = (x1, x2, . . . , xs) G

Assume Alice wishes to read the i-th bit from the `-th part of the database,
namely the bit x`,i for some i∈ [n/s]. She will proceed as follows.

1 Alice invokes the query algorithm of P(Q,A, C) to generate k random-
ized queries q1, q2, . . . , qk := Q(k, n/s; i).

2 She next finds k disjoint recovery setsR1,R2, . . . ,Rk ⊆ [m] such that

x` = ∑j∈R1
cj = ∑j∈R2

cj = · · · = ∑j∈Rk
cj

Such sets exist by Lemma 2. They are used to determine how to assign
the queries q1, q2, . . . , qk to the servers S1,S2, . . . ,Sm.



Proof of main theorem ...continued
3 Let R = R1 ∪R2 · · · ∪ Rk be the union of the k recovery sets. For each

j∈R, Alice finds the unique t∈ [k] such that j∈Rt and sets q∗j = qt. For
j 6∈ R, the query q∗j can be set arbitrarily (say q∗j = q1), since the response
from Sj will be ignored. Alice sends the queries to servers as follows:

(S1,S2, . . . ,Sm) ←−
(
q∗1 , q∗2 , . . . , q∗m

)
Note: The privacy of the queries q∗1 , q∗2 , . . . , q∗m is inherited
from the original PIR protocol P(Q,A, C) being emulated.

4 Alice collects the answers aj =A(k, j; cj, q∗j ) = A(k, t; cj, qt) from the serv-
ers, for all j∈R, and computes:

a′t
def= ∑

j∈Rt

A(k, t; cj, qt) = A
(

k, t; ∑j∈Rtcj, qt

)
= A(k, t; x`, qt)

for t = 1, 2, . . . , k, where the first equality follows from the linearity of the
answer algorithm A and the second from the recovery equations for x`.

5 Alice completes the retrieval by invoking the reconstruction algorithm of
the emulated protocol P(Q,A, C) as follows:

C(k, n/s; i, a′1, . . . , a′k) = C
(
k, n/s; i,A(k,1; x`, q1), . . . ,A(k, k; x`, qk)

)
= x`,i �



What about communication cost?
In order to reduce storage overhead, we emulate a conventional
PIR protocol P by a coded PIR protocol P∗. How much do we
pay in communication complexity?

U(P ; n) def= Worst-case total number of bits uploaded
by a protocol P for a database of length n

D(P ; n) def= Worst-case total number of bits downloaded
by a protocol P for a database of length n

Theorem 4: Communication complexity of coded PIR
Suppose there exists a k-server PIR code C of length m and dimension s. Then
any linear k-server PIR protocol P can be emulated by a coded PIR protocol P∗
with s parts and m shares, having communication complexity:

U
(
P∗; n

)
6 m

k
U(P ; n/s) + m log k and D

(
P∗; n

)
6 m

k
D(P ; n/s)

Proof. On the upload side, the number of queries increases from k to m,
but each query is shorter as it is generated by Q(k, n/s; i) rather than Q(k, n; i).
On the download side, the number of answers also increases from k to m. �



What about communication cost?
In order to reduce storage overhead, we emulate a conventional
PIR protocol P by a coded PIR protocol P∗. How much do we
pay in communication complexity?

U(P ; n) def= Worst-case total number of bits uploaded
by a protocol P for a database of length n

D(P ; n) def= Worst-case total number of bits downloaded
by a protocol P for a database of length n

Theorem 4: Communication complexity of coded PIR
Suppose there exists a k-server PIR code C of length m and dimension s. Then
any linear k-server PIR protocol P can be emulated by a coded PIR protocol P∗
with s parts and m shares, having communication complexity:

U
(
P∗; n

)
6 m

k
U(P ; n/s) + m log k and D

(
P∗; n

)
6 m

k
D(P ; n/s)

Proof. On the upload side, the number of queries increases from k to m,
but each query is shorter as it is generated by Q(k, n/s; i) rather than Q(k, n; i).
On the download side, the number of answers also increases from k to m. �



Summary of our results so far
We have shown that:

existing k-server linear PIR protocol P
+

k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



Summary of our results so far
We have shown that:

existing k-server linear PIR protocol P
+

k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



Summary of our results so far
Why does the bit retrieval in the example
work? Why does everything cancel out?

"

For which m, s, and k do coded k-server PIR
schemes with s parts and m shares exist?

What about the communication complex-
ity of coded PIR schemes?

"

We have shown that:
existing k-server linear PIR protocol P

+
k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



Summary of our results so far
Why does the bit retrieval in the example
work? Why does everything cancel out?"
For which m, s, and k do coded k-server PIR
schemes with s parts and m shares exist?

What about the communication complex-
ity of coded PIR schemes? "

We have shown that:
existing k-server linear PIR protocol P

+
k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



Summary of our results so far
Why does the bit retrieval in the example
work? Why does everything cancel out?"
For which m, s, and k do coded k-server PIR
schemes with s parts and m shares exist?

What about the communication complex-
ity of coded PIR schemes? "

How small can we make the storage
overhead ratio m/s?

We have shown that:
existing k-server linear PIR protocol P

+
k-server PIR code C of length m and dimension s

=
coded k-server PIR protocol P∗with storage overhead m/s



New problem: High-rate PIR codes
According to our construction, coded PIR schemes exist whenever PIR codes
exist. The storage overhead of such coded PIR schemes is completely deter-
mined by the rate of the underlying PIR code.

Open Problem: Given positive integers s and k, deter-
mine the smallest m such that there exists a k-server PIR code
of length m and dimension s.

M(s, k) def= Shortest possible length m of
a k-server PIR code of dimension s

ρ(s, k) def= Smallest possible redundancy of
a k-server PIR code of dimension s

With this notation:

storage overhead =
M(s, k)

s = 1 +
ρ(s, k)

s

We have converted a PIR problem to a coding theory problem!



New problem: High-rate PIR codes
According to our construction, coded PIR schemes exist whenever PIR codes
exist. The storage overhead of such coded PIR schemes is completely deter-
mined by the rate of the underlying PIR code.

Open Problem: Given positive integers s and k, deter-
mine the smallest m such that there exists a k-server PIR code
of length m and dimension s.

M(s, k) def= Shortest possible length m of
a k-server PIR code of dimension s

ρ(s, k) def= Smallest possible redundancy of
a k-server PIR code of dimension s

With this notation:

storage overhead =
M(s, k)

s = 1 +
ρ(s, k)

s

We have converted a PIR problem to a coding theory problem!



New problem: High-rate PIR codes
According to our construction, coded PIR schemes exist whenever PIR codes
exist. The storage overhead of such coded PIR schemes is completely deter-
mined by the rate of the underlying PIR code.

Open Problem: Given positive integers s and k, deter-
mine the smallest m such that there exists a k-server PIR code
of length m and dimension s.

M(s, k) def= Shortest possible length m of
a k-server PIR code of dimension s

ρ(s, k) def= Smallest possible redundancy of
a k-server PIR code of dimension s

With this notation:

storage overhead =
M(s, k)

s = 1 +
ρ(s, k)

s

We have converted a PIR problem to a coding theory problem!



Optimal solution for two servers
For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s, 2) = s + 1 ρ(s, 2) = 1

Why is this true? The encoding of each message x = (x1, x2, . . . , xs)
consists of appending an overall parity bit

c = x1 + x2 + · · ·+ xs

Thus for all i∈ [s], we have xi = x1 + · · ·+ xi−1 + c + xi+1 + · · ·+ xs. This
corresponds to two disjoint recovery setsR1 = {i} andR2 = [s + 1]\{i}.

Theorem 5: PIR without storage overhead
For all ε > 0 it is possible to achieve information-theoretic PIR with com-
munication complexity no(1) by storing at most (1 + ε)n bits.

Proof. Take s = 1/ε, and combine our results for k = 2 with the results of
Dvir-Gopi on 2-server PIR with subpolynomial communication. �



Optimal solution for two servers
For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s, 2) = s + 1 ρ(s, 2) = 1

Why is this true? The encoding of each message x = (x1, x2, . . . , xs)
consists of appending an overall parity bit

c = x1 + x2 + · · ·+ xs

Thus for all i∈ [s], we have xi = x1 + · · ·+ xi−1 + c + xi+1 + · · ·+ xs. This
corresponds to two disjoint recovery setsR1 = {i} andR2 = [s + 1]\{i}.

Theorem 5: PIR without storage overhead
For all ε > 0 it is possible to achieve information-theoretic PIR with com-
munication complexity no(1) by storing at most (1 + ε)n bits.

Proof. Take s = 1/ε, and combine our results for k = 2 with the results of
Dvir-Gopi on 2-server PIR with subpolynomial communication. �



Optimal solution for two servers
For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s, 2) = s + 1 ρ(s, 2) = 1

Why is this true? The encoding of each message x = (x1, x2, . . . , xs)
consists of appending an overall parity bit

c = x1 + x2 + · · ·+ xs

Thus for all i∈ [s], we have xi = x1 + · · ·+ xi−1 + c + xi+1 + · · ·+ xs. This
corresponds to two disjoint recovery setsR1 = {i} andR2 = [s + 1]\{i}.

Theorem 5: PIR without storage overhead
For all ε > 0 it is possible to achieve information-theoretic PIR with com-
munication complexity no(1) by storing at most (1 + ε)n bits.

Proof. Take s = 1/ε, and combine our results for k = 2 with the results of
Dvir-Gopi on 2-server PIR with subpolynomial communication. �



PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes



PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes



PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes



PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes



PIR codes for multiple servers
Open Problem: Can we achieve information-theoretic
PIR with low communication cost without doubling the
number of bits we need to store?

Any reason to go on... Why not stop here?

As the number of servers k grows, the communication complexity
improves dramatically:

n
O

(√
log log n

log n

)
k large−−−−−→ polylog(n)

The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:

Steiner systems and t-designs multiset batch codes
majority-logic decodable codes bipartite graphs of girth 6
local codes with availability constant-weight codes



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



The hypercube construction
Suppose that k = 3 and s = σ2 for some σ∈Z. Arrange
the σ2 message bits in the form of a σ×σ square. To eve-
ry message, we append 2σ parity bits given by:

ci = xi,1 + xi,2 + · · ·+ xi,σ for i∈ [σ]
c′j = x1,j + x2,j + · · ·+ xσ, j for j∈ [σ]

Then for each message bit xi,j we have three disjoint re-
covery equations given by xi,j itself and:

x1,1 · · ·x1,j · · ·x1,σ c1...
...

...
...

xi,1 · · · xi,j · · · xi,σ ci...
...

...
...

xσ, 1 · · ·xσ, j · · ·xσ, σ cσ

c′1 · · · c′j · · · c′σ

xi,1+ · · ·+xi,j−1 + ci + xi,j+1+ · · ·+xi,σ = x1,j+ · · ·+xi−1,j + c′j + xi+1,j+ · · ·+xσ, j

More generally, we arrange σk−1 message bits in the form of a (k−1)-dimensional
hypercube and append a parity bit to each of its (k−1)σk−2 columns. This proves:

M(s, k) = s + (k−1)
⌈

k−1
√

s
⌉ k−2

ρ(s, k) 6 (k−1)
⌈

k−1
√

s
⌉ k−2

It follows that lims→∞ M(s, k)/s = 1 for all fixed k > 2. Therefore, we have proved:

Corollary 6: Multiple-server PIR without storage overhead
For all fixed k > 2 and all ε > 0, there exist k-server coded PIR
schemes that store at most (1 + ε)n bits.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i.

Then:
yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i.

Then:
yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i.

Then:
yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i. Then:

yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0

yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i. Then:

yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



Majority-logic decodable codes
Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes
A linear code C of length n is majority-logic decodable
with parameter J iff for each position i∈ [n], there exist
J parity-checks orthogonal on this position:

i
11. . .11

111 . . .1
...

. . .
1 11. . .1
1 11 . . .1

 J codewords of C⊥

c errors−−−−→ y

ci ? yi

Majority-logic decoding: Given y, evaluate the J orthogonal pa-
rity-checks for each position i. Then:

yi = ci and 6 t other errors =⇒ at least J− t checks evaluate to 0
yi 6= ci and 6 t other errors =⇒ at least J− t checks evaluate to 1

There is an error at position i iff a majority of the J checks evaluate to 1.



PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Proof. It is easy to see that a systematic generator matrix G for C has pro-
perty Pk with k = J + 1. Since G is systematic, the column in position i is ei.

G =

R1

ei

R2 · · · RJ−1 RJ

11. . .1 1
1 11 . . .1...

. . .
1 11 . . .1
1 11 . . .1

 J codewords of C⊥

Thus {ei} andR1,R2, . . . ,RJ are disjoint sets of columns of G that add to ei. �



PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Proof. It is easy to see that a systematic generator matrix G for C has pro-
perty Pk with k = J + 1. Since G is systematic, the column in position i is ei.

G =

R1

ei

R2 · · · RJ−1 RJ

11. . .1 1
1 11 . . .1...

. . .
1 11 . . .1
1 11 . . .1

 J codewords of C⊥

Thus {ei} andR1,R2, . . . ,RJ are disjoint sets of columns of G that add to ei. �



PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Proof. It is easy to see that a systematic generator matrix G for C has pro-
perty Pk with k = J + 1. Since G is systematic, the column in position i is ei.

G = R1 ei R2 · · · RJ−1 RJ

11. . .1 1
1 11 . . .1...

. . .
1 11 . . .1
1 11 . . .1

 J codewords of C⊥

Thus {ei} andR1,R2, . . . ,RJ are disjoint sets of columns of G that add to ei. �



PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Numerous algebraic constructions of cyclic majority-logic decodable codes are
known. For example, Reed-Muller codes, BCH codes, and other codes invariant
under the group of affine permutations:

αi 7→ βαi + γ for all i = 0, 1, . . . , 2m−2 and β,γ∈ GF(2m)

T. Kasami, S. Lin, and W.W. Peterson, Some results on cyclic codes which are invariant
under the affine group, Information and Control, vol. 2, pp. 475–496, November 1968.

Theorem: Doubly-transitive majority-logic codes
Let n = 22ab−1 and let C be a binary cyclic code of length n and co-dimension
(2b+1−1)a − 1. Then C is majority-logic decodable with parameter J = 2a + 1.

As a corollary to this theorem and Lemma 7, whenever the number of servers is
of the form k = 4, 6, 10, . . . , 2a + 2, we have:

ρ(s, k) = O
(√

s
)



PIR codes from majority-logic codes
Lemma 7: PIR codes from majority-logic codes
Let C be a majority-logic decodable code with parameter J.
Then C is also a k-server PIR code with k = J + 1.

Numerous algebraic constructions of cyclic majority-logic decodable codes are
known. For example, Reed-Muller codes, BCH codes, and other codes invariant
under the group of affine permutations:

αi 7→ βαi + γ for all i = 0, 1, . . . , 2m−2 and β,γ∈ GF(2m)

T. Kasami, S. Lin, and W.W. Peterson, Some results on cyclic codes which are invariant
under the affine group, Information and Control, vol. 2, pp. 475–496, November 1968.

Theorem: Doubly-transitive majority-logic codes
Let n = 22ab−1 and let C be a binary cyclic code of length n and co-dimension
(2b+1−1)a − 1. Then C is majority-logic decodable with parameter J = 2a + 1.

As a corollary to this theorem and Lemma 7, whenever the number of servers is
of the form k = 4, 6, 10, . . . , 2a + 2, we have:

ρ(s, k) = O
(√

s
)



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Proof. Given i∈ [s], find k− 1 subsets inA that contain i. W.l.o.g., suppose these
subsets are A1, A2, . . . , Ak−1. Let A′j = Aj \ {i} for all j. Then the sets A′1, A′2, . . . , A′k−1
are disjoint. These sets give rise to k disjoint recovery equations:

xi = c1 + ∑
j∈A′1

xj = c2 + ∑
j∈A′2

xj = · · · = ck−1 + ∑
j∈A′k−1

xj

�

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Proof. Given i∈ [s], find k− 1 subsets inA that contain i. W.l.o.g., suppose these
subsets are A1, A2, . . . , Ak−1. Let A′j = Aj \ {i} for all j. Then the sets A′1, A′2, . . . , A′k−1
are disjoint. These sets give rise to k disjoint recovery equations:

xi = c1 + ∑
j∈A′1

xj = c2 + ∑
j∈A′2

xj = · · · = ck−1 + ∑
j∈A′k−1

xj

�

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Proof. Given i∈ [s], find k− 1 subsets inA that contain i. W.l.o.g., suppose these
subsets are A1, A2, . . . , Ak−1. Let A′j = Aj \ {i} for all j. Then the sets A′1, A′2, . . . , A′k−1
are disjoint. These sets give rise to k disjoint recovery equations:

xi = c1 + ∑
j∈A′1

xj = c2 + ∑
j∈A′2

xj = · · · = ck−1 + ∑
j∈A′k−1

xj

�

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Proof. Given i∈ [s], find k− 1 subsets inA that contain i. W.l.o.g., suppose these
subsets are A1, A2, . . . , Ak−1. Let A′j = Aj \ {i} for all j. Then the sets A′1, A′2, . . . , A′k−1
are disjoint. These sets give rise to k disjoint recovery equations:

xi = c1 + ∑
j∈A′1

xj = c2 + ∑
j∈A′2

xj = · · · = ck−1 + ∑
j∈A′k−1

xj

�

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



Construction from certain set systems
Definition: Almost disjoint k-covers
LetA = {A1, A2, . . . , Ar} be a collection of subsets of [s]. We say thatA is a k-cover
of [s] if every i∈ [s] belongs to at least k of the subsets inA. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, A2, . . . , Ar} of subsets of [s], we construct a system-
atic (s + r, s) linear code C(A) as follows. To each message x = (x1, x2, . . . , xs), we
append r parity bits given by:

c1 = ∑
j∈A1

xj , c2 = ∑
j∈A2

xj , · · · , cr = ∑
j∈Ar

xj

Lemma 8: PIR codes from almost disjoint k-covers
Suppose thatA = {A1, A2, . . . , Ar} is a (k−1)-cover of [s] and the sets inA are
almost disjoint. Then the resulting (s + r, s) code C(A) is a k-server PIR code.

Where can we get almost disjoint k-covers or small size r?

Corollary 9: PIR codes from almost disjoint k-covers
If there exists an almost disjoint (k−1)-cover of [s] with r sets, then ρ(s, k) 6 r.



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example:

Fano plane S(2, 3, 7)

1 2 3 4 5 6 7

B1: • • • −−−−
B2: − • − • − • −
B3: • −− • • −−
B4: • −−−− • •
B5: − • −− • − •
B6: −− • • −− •
B7: −− • − • • −

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
1 2 3 4 5 6 7

B1: • • • −−−−
B2: − • − • − • −
B3: • −− • • −−
B4: • −−−− • •
B5: − • −− • − •
B6: −− • • −− •
B7: −− • − • • −

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
1 2 3 4 5 6 7

B1: • • • −−−−
B2: − • − • − • −
B3: • −− • • −−
B4: • −−−− • •
B5: − • −− • − •
B6: −− • • −− •
B7: −− • − • • −

Observation: There are b = (r
2)/(q

2) blocks in B and each point is contained in
(r−1)/(q−1) of them. Moreover, any two blocks intersect in at most one point.

Conclusion: The blocks of a Steiner system S(2, q, s) form an almost disjoint
(s−1)/(q−1)-cover of [s]. Therefore, when such Steiner systems exist, we have

ρ(s, k) 6 number of blocks in S(2, q, s) =
s(s−1)
q(q−1)

=
s(k−1)2

s + k

where k = (s−1)/(q−1)+ 1.

But, by Fisher’s inequality (# blocks > # points), this
gives ρ(s, k) 6 s at best.

We can do much better with Steiner systems!

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
1 2 3 4 5 6 7

A1: • • • −−−−
A2: − • − • − • −
A3: • −− • • −−
A4: • −−−− • •
A5: − • −− • − •
A6: −− • • −− •
A7: −− • − • • −

Observation: There are b = (r
2)/(q

2) blocks in B and each point is contained in
(r−1)/(q−1) of them. Moreover, any two blocks intersect in at most one point.
For more on Steiner systems and their properties, see the following papers:

G.D. Cohen anf P. Frankl, On generalized perfect codes and Steiner systems, Annals
of Discrete Mathematics, 18, pp. 197–200, 1983.

G.D. Cohen and B. Montaron, Empilements parfaits de boules dans les espaces vec-
toriels binaires, Compte Rendus de l’Academie des Sciences, 288, pp. 579–582, 1979.

B. Montaron and G.D. Cohen, Codes parfaits binaires a plusieurs rayons, Revue du
Centre d’Études Théoriques de la Détection et Communication, NS1979-2, pp. 35–58, 1979.

Conclusion: The blocks of a Steiner system S(2, q, s) form an almost disjoint
(s−1)/(q−1)-cover of [s]. Therefore, when such Steiner systems exist, we have

ρ(s, k) 6 number of blocks in S(2, q, s) =
s(s−1)
q(q−1)

=
s(k−1)2

s + k

where k = (s−1)/(q−1)+ 1.

But, by Fisher’s inequality (# blocks > # points), this
gives ρ(s, k) 6 s at best.

We can do much better with Steiner systems!

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
1 2 3 4 5 6 7

A1: • • • −−−−
A2: − • − • − • −
A3: • −− • • −−
A4: • −−−− • •
A5: − • −− • − •
A6: −− • • −− •
A7: −− • − • • −

Observation: There are b = (r
2)/(q

2) blocks in B and each point is contained in
(r−1)/(q−1) of them. Moreover, any two blocks intersect in at most one point.

Conclusion: The blocks of a Steiner system S(2, q, s) form an almost disjoint
(s−1)/(q−1)-cover of [s]. Therefore, when such Steiner systems exist, we have

ρ(s, k) 6 number of blocks in S(2, q, s) =
s(s−1)
q(q−1)

=
s(k−1)2

s + k

where k = (s−1)/(q−1)+ 1.

But, by Fisher’s inequality (# blocks > # points), this
gives ρ(s, k) 6 s at best.

We can do much better with Steiner systems!

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
1 2 3 4 5 6 7

• • • −−−−
− • − • − • −
• −− • • −−
• −−−− • •
− • −− • − •
−− • • −− •
−− • − • • −

Observation: There are b = (r
2)/(q

2) blocks in B and each point is contained in
(r−1)/(q−1) of them. Moreover, any two blocks intersect in at most one point.

Conclusion: The blocks of a Steiner system S(2, q, s) form an almost disjoint
(s−1)/(q−1)-cover of [s]. Therefore, when such Steiner systems exist, we have

ρ(s, k) 6 number of blocks in S(2, q, s) =
s(s−1)
q(q−1)

=
s(k−1)2

s + k

where k = (s−1)/(q−1)+ 1. But, by Fisher’s inequality (# blocks > # points), this
gives ρ(s, k) 6 s at best.

We can do much better with Steiner systems!

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
A1 A2 A3 A4 A5 A6 A7
• • • − − − −
− • − • − • −
• − − • • − −
• − − − − • •
− • − − • − •
− − • • − − •
− − • − • • −

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from Steiner systems
Let V be a set with r elements,

called points. A Steiner system
S(2, q, r) is a collection B of sub-
sets of V of size q, called blocks,
such that every pair of points is
contained in exactly one block.

Such a system is an example of
a balanced incomplete block design.

Example: Fano plane S(2, 3, 7)
A1 A2 A3 A4 A5 A6 A7
• • • − − − −
− • − • − • −
• − − • • − −
• − − − − • •
− • − − • − •
− − • • − − •
− − • − • • −

Lemma 10: PIR codes from Steiner systems
Let S(2, q, r) be a Steiner system. For each v∈V, let Av⊂B be the set of blocks
that contain v. Then the sets {Av : v∈V} form an almost disjoint q-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |Av ∩Au| = 1, and the sets {Av : v∈V} are almost disjoint. �

By Wilson’s theorem, a Steiner system S(2, q, r) exists for all sufficiently large r
whenever (q−1)|(r−1) and q(q−1)|r(r−1). Combining this theorem with Lem-
ma 10 and Corollary 9, we have:

ρ(s, k) = O
(√

s
)

for all fixed k



PIR codes from bipartite graphs
Let G = (U,V; E) be a bipartite graph, with bipartition U,V and edge set E . We
consider the neighborhoods N(v) = {u∈U : (u, v)∈ E} of vertices in V.

Lemma 11: PIR codes from bipartite graphs
If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v∈V}, form an almost disjoint k-cover of U, where k = minu∈U deg(u).

Proof. Assume to the contrary that there are vertices v1, v2 ∈V such that
|N(v1)∩N(v2)| > 2. Let u1, u2 be some two vertices in N(v1)∩N(v2). Then the
induced subgraph on {v1, v2, u1, u2} is K2,2 which is a 4-cycle in G. �

Given s and k, we would like to construct a bipartite graph G = (U,V; E)
with the following properties:

|U| = s minu∈U deg(u) = k− 1 girth(G) > 6

If we can do this, then ρ(s, k) 6 |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph?

Using the best known results
on bipartite cages, we get:

ρ(s, k) = O
(√

s
)

for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from bipartite graphs
Let G = (U,V; E) be a bipartite graph, with bipartition U,V and edge set E . We
consider the neighborhoods N(v) = {u∈U : (u, v)∈ E} of vertices in V.

Lemma 11: PIR codes from bipartite graphs
If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v∈V}, form an almost disjoint k-cover of U, where k = minu∈U deg(u).

Proof. Assume to the contrary that there are vertices v1, v2 ∈V such that
|N(v1)∩N(v2)| > 2. Let u1, u2 be some two vertices in N(v1)∩N(v2). Then the
induced subgraph on {v1, v2, u1, u2} is K2,2 which is a 4-cycle in G. �

Given s and k, we would like to construct a bipartite graph G = (U,V; E)
with the following properties:

|U| = s minu∈U deg(u) = k− 1 girth(G) > 6

If we can do this, then ρ(s, k) 6 |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph?

Using the best known results
on bipartite cages, we get:

ρ(s, k) = O
(√

s
)

for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from bipartite graphs
Let G = (U,V; E) be a bipartite graph, with bipartition U,V and edge set E . We
consider the neighborhoods N(v) = {u∈U : (u, v)∈ E} of vertices in V.

Lemma 11: PIR codes from bipartite graphs
If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v∈V}, form an almost disjoint k-cover of U, where k = minu∈U deg(u).

Proof. Assume to the contrary that there are vertices v1, v2 ∈V such that
|N(v1)∩N(v2)| > 2. Let u1, u2 be some two vertices in N(v1)∩N(v2). Then the
induced subgraph on {v1, v2, u1, u2} is K2,2 which is a 4-cycle in G. �

Given s and k, we would like to construct a bipartite graph G = (U,V; E)
with the following properties:

|U| = s minu∈U deg(u) = k− 1 girth(G) > 6

If we can do this, then ρ(s, k) 6 |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph?

Using the best known results
on bipartite cages, we get:

ρ(s, k) = O
(√

s
)

for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from bipartite graphs
Let G = (U,V; E) be a bipartite graph, with bipartition U,V and edge set E . We
consider the neighborhoods N(v) = {u∈U : (u, v)∈ E} of vertices in V.

Lemma 11: PIR codes from bipartite graphs
If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v∈V}, form an almost disjoint k-cover of U, where k = minu∈U deg(u).

Proof. Assume to the contrary that there are vertices v1, v2 ∈V such that
|N(v1)∩N(v2)| > 2. Let u1, u2 be some two vertices in N(v1)∩N(v2). Then the
induced subgraph on {v1, v2, u1, u2} is K2,2 which is a 4-cycle in G. �

Given s and k, we would like to construct a bipartite graph G = (U,V; E)
with the following properties:

|U| = s minu∈U deg(u) = k− 1 girth(G) > 6

If we can do this, then ρ(s, k) 6 |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph? Using the best known results
on bipartite cages, we get:

ρ(s, k) = O
(√

s
)

for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:
Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

To learn more about constant-weight codes and their properties, consult the fol-
lowing papers:

Ch. Bachoc, V. Chandar, G.D. Cohen, P. Solé, and A. Tchamkerten, On bounded
weight codes, IEEE Trans. Information Theory, 57, pp. 6780–6787, October 2011.

G.D. Cohen, P. Solé, and A. Tchamkerten, Heavy weight codes, Proceedings IEEE
International Symp. Information Theory, pp. 1120–1124, Austin, TX., June 2010.

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:
Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
d = 2w if and only if any two codewords have disjoint supports:

d = 2w− 2 iff any two codewords intersect in at most one position:

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:
Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
d = 2w if and only if any two codewords have disjoint supports:

d = 2w− 2 iff any two codewords intersect in at most one position:

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:
Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
d = 2w if and only if any two codewords have disjoint supports:

d = 2w− 2 iff any two codewords intersect in at most one position:

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:

s

n

As the weight of each row is w,
columns form a w-cover of [s].

Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
d = 2w if and only if any two codewords have disjoint supports:

d = 2w− 2 iff any two codewords intersect in at most one position:

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:

s

n

As the row supports are almost
disjoint, the column supports

are also almost disjoint.

Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:

s

n

As the row supports are almost
disjoint, the column supports

are also almost disjoint.

Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



PIR codes from constant-weight codes
Definition: Constant-weight codes
Let A2(n, d, w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = A2(n, 2w−2, w), and consider the s× n matrix having the code-
words of C as its rows:

s

n

As the row supports are almost
disjoint, the column supports

are also almost disjoint.

Theorem 12: PIR codes from constant-weight codes

ρ(s, k) 6 the smallest n such that A2(n, 2k−4, k−1) > s
supports are almost disjoint y x (k−1)-cover of [s]

For example, for k = 3 we conclude that ρ(s, 3) is upper bounded by the small-
est n such that n(n−1) > 2s. In general, we again have ρ(s, k) = O

(√
s

)
.



Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22
3 1 3 4 7 8 10 11 14 15 17 18 21 22 24 25
4 1 4 5 7 8 10 11 15 16 19 20 22 23 25 26
5 1 4 5 7 8 13 14 17 18 20 21 23 24 25 26
6 1 4 5 7 8 14 15 18 19 21 22 28 29 32 33
7 1 5 6 7 8 15 16 20 21 22 23 30 31 35 36
8 1 5 6 11 12 15 16 24 25 29 30 35 36 39 40
9 1 5 6 12 13 15 16 25 26 30 31 37 38 40 41

10 1 5 6 13 14 15 16 26 27 31 32 39 40 41 42
11 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
12 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
13 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
14 1 6 7 14 15 21 22 30 31 37 38 39 40 41 42
15 1 6 7 15 16 21 22 30 31 37 38 39 40 41 42
16 1 7 8 16 17 21 22 30 31 45 46 51 52 55 56
17 1 7 8 16 17 21 22 30 31 46 47 55 56 60 61
18 1 7 8 16 17 21 22 30 31 47 48 56 57 61 62
19 1 7 8 16 17 21 22 30 31 48 49 57 58 62 63
20 1 7 8 16 17 21 22 30 31 49 50 58 59 63 64
21 1 7 8 18 19 27 28 30 31 52 53 59 60 70 71
22 1 8 9 18 19 28 29 30 31 53 54 61 62 71 72
23 1 8 9 19 20 28 29 30 31 54 55 62 63 73 74
24 1 8 9 19 20 28 29 30 31 55 56 63 64 74 75

nu
m

be
r

so
f

da
ta

ba
se

pa
rt

s

Redundancy ρ(s, k) of the best-known PIR codes



Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22
3 1 3 4 7 8 10 11 14 15 17 18 21 22 24 25
4 1 4 5 7 8 10 11 15 16 19 20 22 23 25 26
5 1 4 5 7 8 13 14 17 18 20 21 23 24 25 26
6 1 4 5 7 8 14 15 18 19 21 22 28 29 32 33
7 1 5 6 7 8 15 16 20 21 22 23 30 31 35 36
8 1 5 6 11 12 15 16 24 25 29 30 35 36 39 40
9 1 5 6 12 13 15 16 25 26 30 31 37 38 40 41

10 1 5 6 13 14 15 16 26 27 31 32 39 40 41 42
11 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
12 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
13 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
14 1 6 7 14 15 21 22 30 31 37 38 39 40 41 42
15 1 6 7 15 16 21 22 30 31 37 38 39 40 41 42
16 1 7 8 16 17 21 22 30 31 45 46 51 52 55 56
17 1 7 8 16 17 21 22 30 31 46 47 55 56 60 61
18 1 7 8 16 17 21 22 30 31 47 48 56 57 61 62
19 1 7 8 16 17 21 22 30 31 48 49 57 58 62 63
20 1 7 8 16 17 21 22 30 31 49 50 58 59 63 64
21 1 7 8 18 19 27 28 30 31 52 53 59 60 70 71
22 1 8 9 18 19 28 29 30 31 53 54 61 62 71 72
23 1 8 9 19 20 28 29 30 31 54 55 62 63 73 74
24 1 8 9 19 20 28 29 30 31 55 56 63 64 74 75

nu
m

be
r

so
f

da
ta

ba
se

pa
rt

s

Redundancy ρ(s, k) of the best-known PIR codes

Im
prove any entry

in this table!



Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00
2 1.50 2.50 3.00 4.00 4.50 5.50 6.00 7.00 7.50 8.50 9.00 10.00 10.50 11.50 12.00
3 1.33 2.00 2.33 3.33 3.67 4.33 4.67 5.67 6.00 6.67 7.00 8.00 8.33 9.00 9.33
4 1.25 2.00 2.25 2.75 3.00 3.50 3.75 4.75 5.00 5.75 6.00 6.50 6.75 7.25 7.50
5 1.20 1.80 2.00 2.40 2.60 3.60 3.80 4.40 4.60 5.00 5.20 5.60 5.80 6.00 6.20
6 1.17 1.67 1.83 2.17 2.33 3.33 3.50 4.00 4.17 4.50 4.67 5.67 5.83 6.33 6.50
7 1.14 1.71 1.86 2.00 2.14 3.14 3.29 3.86 4.00 4.14 4.29 5.29 5.43 6.00 6.14
8 1.13 1.63 1.75 2.38 2.50 2.88 3.00 4.00 4.13 4.63 4.75 5.38 5.50 5.88 6.00
9 1.11 1.56 1.67 2.33 2.44 2.67 2.78 3.78 3.89 4.33 4.44 5.11 5.22 5.44 5.56

10 1.10 1.50 1.60 2.30 2.40 2.50 2.60 3.60 3.70 4.10 4.20 4.90 5.00 5.10 5.20
11 1.09 1.55 1.64 2.18 2.27 2.91 3.00 3.73 3.82 4.36 4.45 4.55 4.64 4.73 4.82
12 1.08 1.50 1.58 2.08 2.17 2.75 2.83 3.50 3.58 4.08 4.17 4.25 4.33 4.42 4.50
13 1.08 1.46 1.54 2.00 2.08 2.62 2.69 3.31 3.38 3.85 3.92 4.00 4.08 4.15 4.23
14 1.07 1.43 1.50 2.00 2.07 2.50 2.57 3.14 3.21 3.64 3.71 3.79 3.86 3.93 4.00
15 1.07 1.40 1.47 2.00 2.07 2.40 2.47 3.00 3.07 3.47 3.53 3.60 3.67 3.73 3.80
16 1.06 1.44 1.50 2.00 2.06 2.31 2.38 2.88 2.94 3.81 3.88 4.19 4.25 4.44 4.50
17 1.06 1.41 1.47 1.94 2.00 2.24 2.29 2.76 2.82 3.71 3.76 4.24 4.29 4.53 4.59
18 1.06 1.39 1.44 1.89 1.94 2.17 2.22 2.67 2.72 3.61 3.67 4.11 4.17 4.39 4.44
19 1.05 1.37 1.42 1.84 1.89 2.11 2.16 2.58 2.63 3.53 3.58 4.00 4.05 4.26 4.32
20 1.05 1.35 1.40 1.80 1.85 2.05 2.10 2.50 2.55 3.45 3.50 3.90 3.95 4.15 4.20
21 1.05 1.33 1.38 1.86 1.90 2.29 2.33 2.43 2.48 3.48 3.52 3.81 3.86 4.33 4.38
22 1.05 1.36 1.41 1.82 1.86 2.27 2.32 2.36 2.41 3.41 3.45 3.77 3.82 4.23 4.27
23 1.04 1.35 1.39 1.83 1.87 2.22 2.26 2.30 2.35 3.35 3.39 3.70 3.74 4.17 4.22
24 1.04 1.33 1.38 1.79 1.83 2.17 2.21 2.25 2.29 3.29 3.33 3.63 3.67 4.08 4.13

nu
m

be
r

so
f

da
ta

ba
se

pa
rt

s

Storage overhead of the best-known PIR codes



Tables of short PIR codes
number k of servers emulated

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00
2 1.50 2.50 3.00 4.00 4.50 5.50 6.00 7.00 7.50 8.50 9.00 10.00 10.50 11.50 12.00
3 1.33 2.00 2.33 3.33 3.67 4.33 4.67 5.67 6.00 6.67 7.00 8.00 8.33 9.00 9.33
4 1.25 2.00 2.25 2.75 3.00 3.50 3.75 4.75 5.00 5.75 6.00 6.50 6.75 7.25 7.50
5 1.20 1.80 2.00 2.40 2.60 3.60 3.80 4.40 4.60 5.00 5.20 5.60 5.80 6.00 6.20
6 1.17 1.67 1.83 2.17 2.33 3.33 3.50 4.00 4.17 4.50 4.67 5.67 5.83 6.33 6.50
7 1.14 1.71 1.86 2.00 2.14 3.14 3.29 3.86 4.00 4.14 4.29 5.29 5.43 6.00 6.14
8 1.13 1.63 1.75 2.38 2.50 2.88 3.00 4.00 4.13 4.63 4.75 5.38 5.50 5.88 6.00
9 1.11 1.56 1.67 2.33 2.44 2.67 2.78 3.78 3.89 4.33 4.44 5.11 5.22 5.44 5.56

10 1.10 1.50 1.60 2.30 2.40 2.50 2.60 3.60 3.70 4.10 4.20 4.90 5.00 5.10 5.20
11 1.09 1.55 1.64 2.18 2.27 2.91 3.00 3.73 3.82 4.36 4.45 4.55 4.64 4.73 4.82
12 1.08 1.50 1.58 2.08 2.17 2.75 2.83 3.50 3.58 4.08 4.17 4.25 4.33 4.42 4.50
13 1.08 1.46 1.54 2.00 2.08 2.62 2.69 3.31 3.38 3.85 3.92 4.00 4.08 4.15 4.23
14 1.07 1.43 1.50 2.00 2.07 2.50 2.57 3.14 3.21 3.64 3.71 3.79 3.86 3.93 4.00
15 1.07 1.40 1.47 2.00 2.07 2.40 2.47 3.00 3.07 3.47 3.53 3.60 3.67 3.73 3.80
16 1.06 1.44 1.50 2.00 2.06 2.31 2.38 2.88 2.94 3.81 3.88 4.19 4.25 4.44 4.50
17 1.06 1.41 1.47 1.94 2.00 2.24 2.29 2.76 2.82 3.71 3.76 4.24 4.29 4.53 4.59
18 1.06 1.39 1.44 1.89 1.94 2.17 2.22 2.67 2.72 3.61 3.67 4.11 4.17 4.39 4.44
19 1.05 1.37 1.42 1.84 1.89 2.11 2.16 2.58 2.63 3.53 3.58 4.00 4.05 4.26 4.32
20 1.05 1.35 1.40 1.80 1.85 2.05 2.10 2.50 2.55 3.45 3.50 3.90 3.95 4.15 4.20
21 1.05 1.33 1.38 1.86 1.90 2.29 2.33 2.43 2.48 3.48 3.52 3.81 3.86 4.33 4.38
22 1.05 1.36 1.41 1.82 1.86 2.27 2.32 2.36 2.41 3.41 3.45 3.77 3.82 4.23 4.27
23 1.04 1.35 1.39 1.83 1.87 2.22 2.26 2.30 2.35 3.35 3.39 3.70 3.74 4.17 4.22
24 1.04 1.33 1.38 1.79 1.83 2.17 2.21 2.25 2.29 3.29 3.33 3.63 3.67 4.08 4.13

nu
m

be
r

so
f

da
ta

ba
se

pa
rt

s

Storage overhead of the best-known PIR codes



Thank you for your attention!

Please send you queries...


