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Private information retrieval (PIR)

Alice wishes to retrieve a data item x; from the database (x1,x7, . ..,%y)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp.41-50, October 1995.
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Private information retrieval (PIR)

Alice wishes to retrieve a data item x; from the database (x1,x7, . ..,%y)
without revealing any information about i to the server.

Formal privacy condition: The distribution of randomized queries
sent by the user to the server does not depend on i.
00 Solution: Ask the server to send the entire database!

This is the only solution possible! Communication cost = Q(n).

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information retrieval,
Proceedings IEEE Symp. Foundations Computer Science, pp.41-50, October 1995.



Two general classes of solutions

® Computational PIR 2EC

The server is computationally bounded T standard cryptographic
assumptions (one-way functions, quadratic residuosity).

E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database, computationally-private
information retrieval, Proc. 38-th IEEE Symp. Foundations Computer Science, pp. 364-373, October 1997.

® Information-theoretic PIR

The database is replicated among k > 2 non-communicating serv-
ers, with guarantees of information-theoretic privacy.
B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,

Private information retrieval, Proc. 36-th IEEE Symposium
Foundations Computer Science, pp.41-50, October 1995.
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® Information-theoretic PIR

The database is replicated among k > 2 non-communicating serv-
ers, with guarantees of information-theoretic privacy.
B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan,

Private information retrieval, Proc. 36-th IEEE Symposium
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This talk: We consider only information-theoretic PIR!




Information-theoretic PIR: Example

Replication among k = 4 servers S, S, S3, Sy with communication cost
of 8y/n + 4 bits. The database is represented as a square of side /7.
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Query generation: N
Alice wishes to retrieve x; ;. She generates the vectors
y,z €{0,1}V" uniformly at random, and sends s
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Answer computation:

Given a query (u,v), each server S, returns the
following:

- a = E icsupp(u) Zjesupp(v) Yij
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Information-theoretic PIR: Example

Query generation:

S1—(y,2), So—(y+esz), S3—(y,z+e), Ss —(y+e,z+et)
Answer computation:
o= Ziesupp(u) Zjesupp(v) Xij J

3 3

Reconstruction:

a1 ap as a4
© The bit x5 ; contributes to exactly one of the answers a1, a5, a3, 44.
© All other bits in the database contribute an even number of times.

It follows from @ and @ that:
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Note: Dvir-Gopi protocol gives an even better communication cost for large k.
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What about storage overhead?

In addition to the communication cost, another important cost metric is
the storage overhead, defined as follows:

def total number of bits stored on all the servers
storage overhead =

number of bits in the database

@ The storage overhead of replicating the data-
base k times is trivially k. The Dvir and Gopi
paper is considered a breakthrough in part
because it reduces the storage overhead from
k = 3 to k = 2, for the same complexity.

Should we be happy with k =2? In coding theory, increasing the am-
ount of stored data by a factor of two is often undesirable.

But doing better than k = 2 is impossible! It was shown back in 1995
that the communication cost is (1) unless the database is replicated on

at least two non-communicating servers. e
Or is it?
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This talk: The main theme

This is cryptography, people!

We do the impossible
for breakfast.

Open Problem: Can we achieve information-theoretic

PIR with low communication cost but without doubling
(orworse if k > 3) the number of bits we need to store?

Taking cue from distributed storage: In practice, the database may need
to be stored in a distributed manner (e.g., for security or reliability purposes).

Key idea: Partitioning the database

Partition the database string x into parts x1,xp, ..., x;. We willusem > k
non-communicating servers. But each server will store only part of the
database, so that the total number of bits stored is (1 + €)n.




Conventional k-server PIR

Definition: k-server PIR scheme

A k-server PIR scheme consists of the following: a binary string x of length n,
called the database, k non-communicating servers S1, S, . . ., Sy each storing
a replica of x, a user Alice who wishes to retrieve x; for somei € [n], without
revealing i to any of the servers, and a k-server PIR protocol.

Definition: k-server PIR protocol [CKGS95]

The k-server PIR protocol P involves a triple of algorithms Q, A, C and con-
sists of the following steps:
@ Alice flips coins and uses the random outcome to invoke the query al-
gorithm Q(k,n; i) that generates a k-tuple of queries 41,4z, - . ., G-
© Forallj€ [k|, Alice sends the query g; to the j-th server S;.
© Forallj€ [k]|, theserver S; invokes the answer algorithm A to respond
with the answer a; = A(k, j; x, q;)-
© Alice computes x; using the reconstruction algorithm C (k,n;i,a1, ..., a).

The three algorithms together satisfy the correctness (C(k,n;i,a4,...,ar) = X;)
and the privacy (distibution of g; independent of i) conditions defined earlier.
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© A binary linear code C with a certain special
property, to be defined shortly.

@ An existing k-server PIR protocol in which the
answer algorithm is linear in the database.
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Conventional k-server PIR: Linearity

Our construction of distributed PIR schemes with low
storage overhead uses two main ingredients:

© A binary linear code C with a certain special
property, to be defined shortly.

@ An existing k-server PIR protocol in which the
answer algorithm is linear in the database.

Definition: Linear k-server PIR protocol
A k-server PIR protocol P(Q, A,C) is linear if for all x1,x; € {0,1}"
and for all possible queries g, the following holds:

Ak, ;21 +x2,q9) = Ak, j;x1,q9) + Ak, j;x2,9) for all j € [k]

Good news: All known PIR protocols are linear!

Note: We also assume that the answer algorithm A is public knowledge. This
means that any server can simulate the answers of any other server.
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is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length 1 into 4 parts x1, x, x3, x4, each of
length 1/4. These parts are distributed among 8 servers as follows:

S =x Ss: 5 = x1 +x
321 Cr = Xp 86: Ce = X7 + X3 (*)
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The result is a coded PIR scheme with s = 4 parts x1, x2,x3,x4 and m = 8
coded shares c1, ¢y, c3,¢4, C5, Cq, C7,C8.



Example: Coded 3-server PIR

Consider any existing 3-server PIR protocol P (Q, A,C ), and assume it
is linear. We will reduce its storage overhead from k = 3 to m/s = 2.

We partition the database x of length 1 into 4 parts x1, x, x3, x4, each of
length 1/4. These parts are distributed among 8 servers as follows:

S =x Ss: 5 = x1 +x
Sz: Cr = Xp 86: Ce = X7 + X3 (*)
S3: 3 =13 S7icp=x35+ x4
Sy €4 = x4 Sg: g = x4 +x1

The result is a coded PIR scheme with s = 4 parts x1, x2,x3,x4 and m = 8
coded shares c1, ¢y, c3,¢4, C5, Cq, C7,C8.

storage overhead =

1/ s bits stored on m servers _m
n bits in the database s
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That is, she wants the bit x; ; for some i € [1n/4]. She proceeds as follows:

© Alice flips coins and invokes the query algorithm of P(Q, A,C) to
generate three queries g1, 42,93 := Q(3,n/4;1).
© She sends queries to the 8 servers as follows:
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Example: How to retrieve x;?
Assume, for now, that Alice wishes to read the i-th bit from the first part x;.
That is, she wants the bit x; ; for some i € [1n/4]. She proceeds as follows:

© Alice ignores the answers from S3, Sg, S7 but collects the other five
answers as follows:

Server | Query | Response
Sl fh a1 = .A(3, 1,'C1,L]1) = .A(3, 1;X1,ql)
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Sg q3 | as = A(3,3;¢c5,q3) = A(3,3;x4+x1,43)

O Since the answer algorithm of P (Q, A, C) is linear in the database,
Alice can compute:

ay = ay+as = A(3,2x,q2) + A3, 2;x1+x2,92) = A(3,2;x1,42)
ay = ay+ag = A(3,3;x4,q3) + A(3,3;x4+x1,93) = A(3,3;x1,93)
© Using the reconstruction algorithm of P ( 0, A, C), Alice now com-
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That is, she wants the bit x; ; for some i € [1n/4]. She proceeds as follows:

© Alice flips coins and invokes the query algorithm of P(Q, A,C) to
generate three queries g1, 42,93 := Q(3,1n/4;1i), exactly as before.
© She sends queries to the 8 servers as follows:
(Sll 82/ 83/ S4/ 85/ 86/ S7/ 88) — (172/ q1,93,493,492,493,93, q3)

© Alice ignores the answers from Sy, S7, Sg but collects the other five
answers as follows:
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Si 72 =A(3,2c1,q2) = A3, 2;%1,92)
82 111 a2 = (3 1,'C2,l]1) A(3, 1;x2,q1)
S3 q3 | a3 =A(3,3;¢c3,q3) = A(3,3;x3,43)
S5 02 a5 = (3 2;C5,(]2) = A(3,2;x1 +X2,q2)
Se 93 A(3,3;¢6,q3) = A(3,3;%2+x3,93)




Example: How to retrieve x;?

Now assume that Alice wishes to read the i-th bit from the second part x;.
That is, she wants the bit x; ; for some i € [1n/4]. She proceeds as follows:

© She sends queries to the 8 servers as follows:

(Sl/ SZ/ 83/ 84/ 85/ 86/ 871 88) — (qZI QL 43/ 43/ qZI (13/ %/ %)

© Alice ignores the answers from Sy, Sy, Sg but collects the other five
answers as follows:

Server | Query | Response
Sl q2 ap = A(3,2; Cl,qg) = A(3,2;X1,q2)
82 q1 ay = .A(3, 1;C2,q1) = A(3, 1;x2,q1)
S 73 | a3 = A(3,3¢3,93) = A(3,3;x3,43)
S5 q2 as = ./4(3,2,' C5,L]2) = A(3,2;x1—|—x2,q2)
Se 93 | a6 = A(3,3;¢c6,93) = A3, 3%+ x3,43)

O Since the answer algorithm of P (Q, A, C) is linear in the database,
Alice can compute:

ay = a;+as = A(3,2x1,q2) + A(3,2;x1 +x2,42) = A(3,2,x2,92)
ay = a3 +ag = A(3,3;x3,q3) + A(3,3;x0+ x3,93) = A(3,3;x2,93)



Example: How to retrieve x;?
Now assume that Alice wishes to read the i-th bit from the second part x;.
That is, she wants the bit x; ; for some i € [1n/4]. She proceeds as follows:

© Alice ignores the answers from Sy, Sy, Sg but collects the other five
answers as follows:

Server | Query | Response
Si 2 | m=A32c,q)=A32x,90)
SQ q1 ay = (3 1 C2/q1) A(3,1;x2,q1)
S 73 | a3 = A(3,3¢3,q3) = A(3,3;x3,43)
Ss g2 | a5 =A(3,2;¢c5,q2) = A(3,2x1+x,q2)
Se 9 | a6 = A(3,3;¢c6,93) = A3, 3,2+ %3,43)

O Since the answer algorithm of P (Q, A, C) is linear in the database,
Alice can compute:

@y = a1 +as = A(3,2;x1,q2) + A(3,2x1+x2,92) = A(3,2x2,92)
ay = a3 +ag = A(3,3;x3,q3) + A(3,3;x0+ x3,93) = A(3,3;x2,93)
© Using the reconstruction algorithm of P ( 0, A, C), Alice now com-
putes C(3,n/4;i,a5,a},d}), which is given by:
C (3r n/4r ir A(3/ 1/ X2, Q1), -/4(3r 2/ X2, qZ)r -’4(3/ 3/ X2, %)) - xZ,i



Coded k-server PIR: Definition

Definition: Coded k-server PIR scheme

A coded k-server PIR scheme with s parts and m shares consists of the
following ingredients:

@ A binary string x of length n, called the database, that is partiti-
oned into s parts x1,x,...,xs, each of lengthn/s.

@ Coded shares cy,cy,...,cy of lengthn /s, where ¢ is a linear fun-
ction of x1,xy,...,x; for all j € [m], stored in m non-communicat-
ing servers S1, Sy, ..., Sm.

@ A user Alice who wishes to retrieve x; for some i € [n], without
revealing i to any of the servers.

@ A coded k-server PIR protocol P*(Q*, A% C *) that emulates a con-
ventional k-server PIR protocol P(Q, A,C).

Note: The emulation property of P*(Q* A% C*) can be formally defined.
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Definition: Coded k-server PIR scheme

A coded k-server PIR scheme with s parts and m shares consists of the
following ingredients:

@ A binary string x of length n, called the database, that is partiti-
oned into s parts x1,x,...,xs, each of lengthn/s.

@ Coded shares cy,cy,...,cn of lengthn /s, where ¢; is a linear fun-
ction of x1,xy,...,x; for all j € [m], stored in m non-communicat-
ing servers S1, Sy, ..., Sm.

@ A user Alice who wishes to retrieve x; for some i € [n], without
revealing i to any of the servers.

@ A coded k-server PIR protocol P*(Q*, A% C *) that emulates a con-
ventional k-server PIR protocol P(Q, A,C).

Note: The emulation property of P*(Q* A% C*) can be formally defined.

Theorem 1: Storage overhead of coded PIR

The storage overhead of a coded k-server PIR scheme
with s parts and m coded shares is m1/s.
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General coded PIR schemes?

So far, we have seen a general definition, and a single example of a coded
PIR scheme with 4 parts and 8 shares that conforms to this defintion.

WHAT Is TI‘"S? @ Why does the bit retrieval in the

example work? Why does every-
thing nicely cancel out?

@ For which values of m, s, and k do
coded k-server PIR schemes with
s parts and m shares exist?

@ What about their communication
complexity?

@ How small can we make the stor-
age overhead ratio m/s?

To answer these questions, let us begin by revisiting the example.



The example revisited

In the encoding equations (x) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1=x1, 3 = X3, €5 = X1+ X2, C7 = X3+ X4
) =Xy, €4 = Xy, C6 = X2 + X3, g =x4+x
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c1=x1, 3 = X3, €5 = X1+ X2, C7 = X3+ X4
) =Xy, €4 = Xy, C6 = X2 + X3, g =x4+x

Rewrite these equations in matrix form:

10001001
(c1,€2,€3,¢€4,¢5,C6,€7,€8) = (x1,%2,%3,%4) 8 (1) (1) 8 (1) % (1) 8
00010011



The example revisited

In the encoding equations (x) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

=X, €3 = X3, €5 = X1+ X2, €7 = X3+ X4
C2 = X2, C4 = Xy, Co = X2 + X3, €8 = X4 + X1
Rewrite these equations in matrix form:
10001001
(c1,€2,€3,¢€4,¢5,C6,€7,€8) = (x1,%2,%3,%4) 8 (1) (1) 8 (1) % (1) 8
00010011

Observe that each part x1, xp, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

xX] = cs+cp = cg+cy
X) = € = C5+C = Co+C3
X3 = €3 = C+€3 = C7+c¢4
X4 = € = Cc7t+c3 = cg+ 01



The example revisited

In the encoding equations (x) of the example, the 8 coded shares are com-
puted from the four database parts x1, x2, x3, x4 as follows:

c1=x1, 3 = X3, €5 = X1+ X2, C7 = X3+ X4
) =Xy, €4 = Xy, C6 = X2 + X3, g =x4+x

Rewrite these equations in matrix form:

10001001
(c1,€2,€3,¢€4,¢5,C6,€7,€8) = (x1,%2,%3,%4) 8 (1) (1) 8 (1) % (1) 8
00010011

Observe that each part x1, xp, x3, x4 of the database can be recovered from
the coded shares in k = 3 different ways. Explicitly:

X] = € = C5+C = cg+C4
X) = € = C5+C = Co+C3
X3 = €3 = C+€3 = C7+c¢4
X4 = € = Cc7t+c3 = cg+ 01

Moreover, each coded share ¢, ¢, ¢3, ¢4, €5, ¢4, €7, €3 appears in each of the
four recovery equations above no more than once.



PIR matrix and PIR codes

Definition: k-server PIR matrix

Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist

k disjoint sets of columns of G that add to e;. A matrix that has property Py
is also said to be a k-server PIR matrix.




PIR matrix and PIR codes

Definition: k-server PIR matrix

Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist

k disjoint sets of columns of G that add to e;. A matrix that has property Py
is also said to be a k-server PIR matrix.

10001001
01001100
00100110
00010011

Note: This is the encoding matrix for the PIR scheme in our example.
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Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist
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Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist
k disjoint sets of columns of G that add to e;. A matrix that has property Py
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Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist
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Definition: k-server PIR matrix

Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist
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PIR matrix and PIR codes

Definition: k-server PIR matrix

Let e; denote the binary unit vector with 1 in position i and zeros elsewhere.
An's x m binary matrix G is said to have property Py, if for alli € [s] there exist
k disjoint sets of columns of G that add to e;. A matrix that has property Py
is also said to be a k-server PIR matrix.

Tlo[ofo]1 o[0T ol T[o] [o 11
ol1/ofo|1 1]o]o 1ol _lol . lol _ o] .o
ololzfolo 1]1fo|| "™ € = {o| = |1|T|1]| = |o| T |0
ololof1]o 0|11 1 1l o 1l o

Note: This is the encoding matrix for the PIR scheme in our example.

Definition: k-server PIR code

A binary linear code C of length m and dimension s will be called a k-server
PIR code if there exists a generator matrix G for C with property Py.




Recovery equations from PIR codes

Lemma 2: Disjoint recovery sets

Let C be a k-server PIR code and let G be an s X m generator matrix for C with
property Py. Letc = xG be the encoding of a message x = (x1, %y, .. .,Xs). Then
for all i € [s], there exist k disjoint recovery sets R1, R, ..., Ry such that

oG :ch: ch = ooc :ch

j€R1 jERz jGRk




Recovery equations from PIR codes

Lemma 2: Disjoint recovery sets

Let C be a k-server PIR code and let G be an s X m generator matrix for C with
property Py. Letc = xG be the encoding of a message x = (x1, %y, .. .,Xs). Then
for all i € [s], there exist k disjoint recovery sets R1, R, ..., Ry such that

X; :ch: ch = ooc :ch

j€R1 jERz jGRk

Proof. Let g1, g2, ...,gm denote the columns of G. Then ¢ = xG can be writ-
ten in terms of the inner products of these columns with x, as follows:

c = (c1,c0,--,0m) = ((x,81), (x, ) ,.-., (%, &m))

Now suppose that for some set of indices R = {j1,j2,...,jr} C [m], the corres-
ponding columns of G add to the unit vector e;. Then

Gt = (08t (ng) = (x gyt tg;) = (xe) = x;

It follows from the above that the recovery sets Rq, R, . .., Ry C [m], are simply
the indices of the disjoint sets of columns of G that add up to e;. N



Construction of coded PIR schemes

Theorem 3: Coded PIR schemes from PIR codes

Suppose there exists a k-server PIR code C of length m and dimension s and
ak-server linear PIR protocol P(Q,A,C). Then there exists a coded PIR scheme
with s parts and m shares along with the corresponding coded PIR protocol.




Construction of coded PIR schemes

Theorem 3: Coded PIR schemes from PIR codes

Suppose there exists a k-server PIR code C of length m and dimension s and
ak-server linear PIR protocol P(Q,A,C). Then there exists a coded PIR scheme
with s parts and m shares along with the corresponding coded PIR protocol.

Proof. Let G be a generator matrix for C with property Py. Then the coded
shares are computed from the database parts x1,xy, . . ., x5 as follows:

(c1,€2,..,cm) = (x1,x2,...,%5) G

Assume Alice wishes to read the i-th bit from the ¢-th part of the database,
namely the bit x;; for some i € [n/s]. She will proceed as follows.
@ Alice invokes the query algorithm of P(Q, A, C) to generate k random-
ized queries q1, 42, ..., qx := Q(k,n/s;i).

© She next finds k disjoint recovery sets Rq, Ry, ..., Ry C [m] such that

Xe = ZjeRlcj = Zjechj == ZjeRka

Such sets exist by Lemma 2. They are used to determine how to assign
the queries g1, g2, . - ., g to the servers §1, Sy, . .., Sp.



Proof of main theorem ...continued

© Let R =R1UR,- - URy be the union of the k recovery sets. For each
j€ R, Alice finds the unique t € [k] such that j j € R and sets q; = g;. For
j & R, the query g7 can be set arbitrarily (say q = 1), since the response
from S; will be ignored. Alice sends the querles to servers as follows:

(81182/--~/Sm) — (qliqZI"'/qm)

Note: The privacy of the queries 45,43, . . ., qy, is inherited
from the original PIR protocol P(Q,A, C) being emulated. J

O Alice collects the answers a; = A(k,j; ¢, q]*) = Akt cj, qt) from the serv-
ers, for all j € R, and computes:

d f
a; = ZA (k. t;ci,qt) = A(k,f;ZjeRth,Qt) = Ak, t;xp,q¢)
]ERt
fort =1,2,...,k where the first equality follows from the linearity of the
answer algorithm 4 and the second from the recovery equations for x;.

© Alice completes the retrieval by invoking the reconstruction algorithm of
the emulated protocol P(Q, A, C) as follows:

C(kn/s;i,ay, ... a ) = Clk,n/s;i, A(k,1;x0,q1), ..., Alk, k;xp,q)) = xg; 0



What about communication cost?

In order to reduce storage overhead, we emulate a conventional @
PIR protocol P by a coded PIR protocol P*. How much do we /
pay in communication complexity? :

U(P' n) def Worst-case total number of bits uploaded
77"/ by a protocol P for a database of length n

D(P’ n) def Worst-case total number of bits downloaded
7"/ by a protocol P for a database of length n




What about communication cost?

In order to reduce storage overhead, we emulate a conventional @
PIR protocol P by a coded PIR protocol P*. How much dowe
pay in communication complexity? ‘B

U(P' n) def Worst-case total number of bits uploaded
7"/ by a protocol P for a database of length n

D(P‘ n) def Worst-case total number of bits downloaded
7"/ by a protocol P for a database of length n

Theorem 4: Communication complexity of coded PIR

Suppose there exists a k-server PIR code C of length m and dimension s. Then
any linear k-server PIR protocol P can be emulated by a coded PIR protocol P*
with s parts and m shares, having communication complexity:

U(Pn) < L U(P;n/s) + mlogk and D(P%n) < % D(P;n/s)

Proof. On the upload side, the number of queries increases from k to m,
but each query is shorter as it is generated by Q(k, n/s;i) rather than Q(k, n; ).

On the download side, the number of answers also increases from k to m. =



Summary of our results so far

We have shown that:

existing k-server linear PIR protocol P |

+

k-server PIR code C of length m and dimension s ;

coded k-server PIR protocol P* with storage overhead m /s J
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Summary of our results so far

NICEJOB..BUT @ Why does the bit retrieval in the example,

work? Why does everything cancel ou

. @ For which m, s, and k do coded k-server PIR
. i ‘ ; schemes with s parts and m shares exist?
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We have shown that:
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coded k-server PIR protocol P* with storage overhead m /s )
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of length m and dimension s.

M( s, k) def Shortest possible length m of

a k-server PIR code of dimension s
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New problem: High-rate PIR codes

According to our construction, coded PIR schemes exist whenever PIR codes

exist. The storage overhead of such coded PIR schemes is completely deter-
mined by the rate of the underlying PIR code.

Open Problem: Given positive integers s and k, deter-

mine the smallest m such that there exists a k-server PIR code
of length m and dimension s.

def Shortest possible length m of
M<S’ k) ~ ak-server PIR code of dimension s

(S k) Smallest possible redundancy of
PAS, a k-server PIR code of dimension s

With this notation:

storage overhead =

:' We have converted a PIR problem to a coding theory problem!



Optimal solution for two servers

For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s,2) = s+1 p(s,2) =1



Optimal solution for two servers

For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s,2) = s+1 p(s,2) =1
Why is this true? The encoding of each message x = (x1,x,...,%s)
consists of appending an overall parity bit
C = X1+Xp+ -+ Xg

Thus foralli € [s], wehave x; = x1 + - - +x;_1 + ¢+ X1+ - - +xs. This
corresponds to two disjoint recovery sets Rq = {i} and R, = [s + 1] \{i}.



Optimal solution for two servers

For k = 2, the coding-theory problem is trivial. The single parity-check
code of dimension s is a 2-server PIR code, and therefore:

M(s,2) = s+1 p(s,2) =1
Why is this true? The encoding of each message x = (x1,x,...,%s)
consists of appending an overall parity bit
C = X1+Xp+ -+ Xg

Thus foralli € [s], wehave x; = x1 + - - +x;_1 + ¢+ X1+ - - +xs. This
corresponds to two disjoint recovery sets Rq = {i} and R, = [s + 1] \{i}.

Theorem 5: PIR without storage overhead

For all ¢ > 0 it is possible to achieve information-theoretic PIR with com-
munication complexity n°") by storing at most (1 + €)n bits.

PTOOf. Take s = 1/¢, and combine our results for k = 2 with the results of
Dvir-Gopi on 2-server PIR with subpolynomial communication. O
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more interesting for k > 3. It has strong connections with:
@ Steiner systems and t-designs @ multiset batch codes
@ majority-logic decodable codes @ bipartite graphs of girth 6
@ local codes with availability @ constant-weight codes
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@ As the number of servers k grows, the communication complexity

improves dramatically: —
08 081 k large
nO( logn ) ——=" polylog(n) J

@ The coding-theory problem of determining M(s, k) becomes much
more interesting for k > 3. It has strong connections with:
@ Steiner systems and t-designs @ multiset batch codes
@ majority-logic decodable codes @ bipartite graphs of girth 6
@ local codes with availability @ constant-weight codes



The hypercube construction

Suppose that k = 3 and s = ¢2 for some 0 € Z. Arrange
the 0% message bits in the form of a o x o square. To eve-
ry message, we append 2¢ parity bits given by:

¢ = xi,l + xi,z + -4 xi,O’ for ie [U’]
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The hypercube construction

Suppose that k = 3 and s = ¢ for some o € Z. Arrange
the o2 message bits in the form of a ¢ x ¢ square. To eve-
ry message, we append 2¢ parity bits given by:

¢ = Xj1+tXip+ -+ Xio for iE[U’]

c]’- = Xyt X+ + X for j€ o]
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Then for each message bit x; ; we have three disjoint re-
covery equations given by x;; itself and:
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The hypercube construction

Suppose that k = 3 and s = ¢ for some o € Z. Arrange
the o2 message bits in the form of a ¢ x ¢ square. To eve-
ry message, we append 2¢ parity bits given by:

¢ = Xj1+tXip+ -+ Xio for iE[O’]

c]’- = Xyt X+ + X for j€ o]

X110 X1 X0 | C

qu...xo_]....xarg Co

Then for each message bit x; ; we have three disjoint re-
covery equations given by x;; itself and:

Xigbt e X TG Xt Xy = x1j+"‘+xi71j+cl‘+xi+1]+"’+xaj

More generally, we arrange ¢*~ ! message bits in the form of a (k—1)-dimensional

hypercube and append a parity bit to each of its (k—1)c*~2 columns. This proves:

M(s, k) = s+ (k—l)[k’\lﬁwk_z




The hypercube construction

Suppose that k = 3 and s = ¢ for some o € Z. Arrange
the o2 message bits in the form of a ¢ x ¢ square. To eve-
ry message, we append 2¢ parity bits given by:

¢ = Xj1+tXip+ -+ Xio for iE[O’]

¢; = x1j+ X+ + Xy for je o]

X110 X1 X0 | C

qu...xa_]....x{zg Co

Then for each message bit x; ; we have three disjoint re-
covery equations given by x;; itself and:

Xigt+ o AXpj F G+ Xt X = x1j+'~'+xi,1]’+c{+xi+1]'+'~-+xgj

More generally, we arrange ¢*~ ! message bits in the form of a (k—1)-dimensional

hypercube and append a parity bit to each of its (k—1)c*~2 columns. This proves:

It follows that lims—..o M(s, k) /s = 1 for all fixed k > 2. Therefore, we have proved:

(@ For all fixed k > 2 and all £ > 0, there exist k-server coded PIR
wamdl schemes that store at most (1 + ¢)n bits.




Majority-logic decodable codes

Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.



Majority-logic decodable codes

Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes

A linear code C of length n is majority-logic decodable
with parameter | iff for each position i € [n], there exist
| parity-checks orthogonal on this position:
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over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes

A linear code C of length n is majority-logic decodable
with parameter | iff for each position i € [n], there exist
| parity-checks orthogonal on this position:

i

11...11
111...1

J codewords of C+

1 1.1
1 1...1

errors

Majori ty—l Ogi cdecodin g: Given y, evaluate the | orthogonal pa-

rity-checks for each position i. Then:

@ y; = ¢; and < f other errors = atleast | — f checks evaluate to 0
@ y; # ¢; and < t other errors = atleast | — f checks evaluate to 1



Majority-logic decodable codes

Majority-logic decoding originated with the work of Reed and Massey
over 50 years ago. 100s of papers in the 1960s and 1970s... now forgotten.

Definition: Majority-logic decodable codes

A linear code C of length n is majority-logic decodable
with parameter | iff for each position i € [n], there exist
| parity-checks orthogonal on this position:

i

11...11
111...1

J codewords of C+

1 1.1
1 1...1

errors

Majori ty—l Ogi cdecodin g: Given y, evaluate the | orthogonal pa-

rity-checks for each position i. Then:

@ y; = ¢; and < f other errors = atleast | — f checks evaluate to 0
@ y; # ¢; and < tother errors = at least | — f checks evaluate to 1

There is an error at position 1 iff a majority of the | checks evaluate to 1.



PIR codes from majority-logic codes

Lemma7: PIR codes from majority-logic codes

Let C be a majority-logic decodable code with parameter |.
Then C is also a k-server PIR code withk = ] + 1.
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Lemma7: PIR codes from majority-logic codes

Let C be a majority-logic decodable code with parameter |.
Then C is also a k-server PIR code withk = | + 1.

Proof. 1tis easy to see that a systematic generator matrix G for C has pro-
perty P with k = J + 1. Since G is systematic, the column in position i is e;.

G =

: . J codewords of C*+
1 11...1
1



PIR codes from majority-logic codes

Lemma7: PIR codes from majority-logic codes

Let C be a majority-logic decodable code with parameter |.
Then C is also a k-server PIR code withk = | + 1.

Proof. 1t is easy to see that a systematic generator matrix G for C has pro-
perty P with k = J + 1. Since G is systematic, the column in position i is e;.

G = Rl e; Rz R]_l R]
11...11
111...1
: .. J codewords of C*+
1 11...1
1

11...1

Thus {e;} and R1, Ry, ..., R are disjoint sets of columns of G that add to e;. [



PIR codes from majority-logic codes

Lemma7: PIR codes from majority-logic codes

Let C be a majority-logic decodable code with parameter |. N
Then C is also a k-server PIR code withk = ] + 1. B

Numerous algebraic constructions of cyclic majority-logic decodable codes are

known. For example, Reed-Muller codes, BCH codes, and other codes invariant
under the group of affine permutations:

o — Bal4  forall i=0,1,...,2"-2 and B,y GF(2")

T.Kasami, S.Lin, and W.W. Peterson, Some results on cyclic codes which are invariant
under the affine group, Information and Control, vol. 2, pp.475-496, November 1968.

Theorem: Doubly-transitive majority-logic codes

Let n = 2?® —1 and let C be a binary cyclic code of length n and co-dimension
(2b*1-1)* — 1. Then C is majority-logic decodable with parameter | = 2* + 1.




PIR codes from majority-logic codes

Lemma7: PIR codes from majority-logic codes

Let C be a majority-logic decodable code with parameter |. N
Then C is also a k-server PIR code withk = | + 1. U

Numerous algebraic constructions of cyclic majority-logic decodable codes are
known. For example, Reed-Muller codes, BCH codes, and other codes invariant
under the group of affine permutations:

o — Bal4  forall i=0,1,...,2"-2 and B,y GF(2")

T.Kasami, S.Lin, and W.W. Peterson, Some results on cyclic codes which are invariant
under the affine group, Information and Control, vol. 2, pp.475-496, November 1968.

Theorem: Doubly-transitive majority-logic codes

Let n = 2?® —1 and let C be a binary cyclic code of length n and co-dimension
(2b*1-1)* — 1. Then C is majority-logic decodable with parameter | = 2* + 1.

As a corollary to this theorem and Lemma 7, whenever the number of servers is
of the form k = 4,6,10,...,2° + 2, we have:

p(s,k) = O(Vs)




Construction from certain set systems

Definition: Almost disjoint k-covers

Let A ={A1,A,, ..., A/} be a collection of subsets of [s]. We say that A is a k-cover
of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.
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of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, Ay, ..., As} of subsets of [s], we construct a system-
atic (s +7,s) linear code C(.A) as follows. To each message x = (x1,Xa,...,%s), we

append r parity bits given by:
=Y X, =) %, 6= )%
jEAl jEAz jGAr
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Definition: Almost disjoint k-covers

Let A ={A1,A,, ..., A/} be a collection of subsets of [s]. We say that A is a k-cover
of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, Ay, ..., As} of subsets of [s], we construct a system-
atic (s +7,s) linear code C(.A) as follows. To each message x = (x1,Xa,...,%s), we
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Lemma 8: PIR codes from almost disjoint k-covers

Suppose that A = {A1, Ay, ..., A} isa (k—1)-cover of [s] and the sets in A are
almost disjoint. Then the resulting (s +r,s) code C(.A) is ak-server PIR code.




Construction from certain set systems

Definition: Almost disjoint k-covers

Let A ={A1,A,, ..., A/} be a collection of subsets of [s]. We say that A is a k-cover
of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, Ay, ..., As} of subsets of [s], we construct a system-
atic (s +7,s) linear code C(.A) as follows. To each message x = (x1,Xa,...,%s), we

append r parity bits given by:
=1 =) %, =)y
jeEA; jEA jEA,
Lemma 8: PIR codes from almost disjoint k-covers

Suppose that A = {A1, Ay, ..., A} isa (k—1)-cover of [s] and the sets in A are
almost disjoint. Then the resulting (s +r,s) code C(.A) is ak-server PIR code.

Proof. Giveni € [s], find k — 1 subsets in A that contain i. W.L.o.g., suppose these
subsetsare A1, A, ..., Ar_1. LetA A; \ {i} for allj. Then the sets A}, A, ..., A},
are disjoint. These sets give rise to k dls]01nt recovery equations:

X; = C1+2Xj = 02—1—ij = .. = Ck,1+2x]'
e, jeAy jea, , 0



Construction from certain set systems

Definition: Almost disjoint k-covers

Let A ={A1,A,, ..., A/} be a collection of subsets of [s]. We say that A is a k-cover
of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, Ay, ..., As} of subsets of [s], we construct a system-
atic (s +7,s) linear code C(.A) as follows. To each message x = (x1,Xa,...,%s), we

append r parity bits given by:
=Y X, =) %, 6= )%
jEAl jEAz jGAr

Lemma 8: PIR codes from almost disjoint k-covers

Suppose that A = {A1, Ay, ..., A} isa (k—1)-cover of [s] and the sets in A are
almost disjoint. Then the resulting (s +r,s) code C(.A) is ak-server PIR code.

Corollary 9: PIR codes from almost disjoint k-covers

If there exists an almost disjoint (k—1)-cover of [s] with r sets, then p(s, k) < r.




Construction from certain set systems

Definition: Almost disjoint k-covers

Let A ={A1,A,, ..., A/} be a collection of subsets of [s]. We say that A is a k-cover
of [s] if every i € [s] belongs to at least k of the subsets in A. We say that these sub-
sets are almost disjoint if any two of them intersect in at most one element.

Given any collection A = {A1, Ay, ..., As} of subsets of [s], we construct a system-
atic (s +7,s) linear code C(.A) as follows. To each message x = (x1,Xa,...,%s), we

append r parity bits given by:
=Y X, =) %, 6= )%
jEAl jEAz jGAr

Lemma 8: PIR codes from almost disjoint k-covers

Suppose that A = {A1, Ay, ..., A} isa (k—1)-cover of [s] and the sets in A are
almost disjoint. Then the resulting (s +r,s) code C(.A) is ak-server PIR code.

Corollary 9: PIR codes from almost disjoint k-covers

If there exists an almost disjoint (k—1)-cover of [s] with r sets, then p(s, k) < .

&1 Where can we get almost disjoint k-covers or small size r?



PIR codes from Steiner systems

called points. A Steiner system
S(2,4,r) is a collection B of sub- By: ???????
sets of V of size g, called blocks, By —®— o — o —
such that every pair of points is Bs: o —— 00— —
. . By: @« —— — — o @
contained in exactly one block. By —o——o—e
@ Such a system is an example of g? _ : ° oo *

a balanced incomplete block design. |
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called points. A Steiner system
S8(2,4,r) is a collection B of sub- By: ???????
sets of V of size g, called blocks, By —®— o — o —
such that every pair of points is Bs: o —— 00— —
. . By: @« —— — — o @
contained in exactly one block. By —o——o—e
@ Such a system is an example of g? _ : ° oo *
a balanced incomplete block design. |

Observation: There are b = (3)/(]) blocks in 3 and each point is contained in
(r—1)/(g—1) of them. Moreover, any two blocks intersect in at most one point.



PIR codes from Steiner systems

called points. A Steiner system
S8(2,4,r) is a collection B of sub- A ???????
sets of V of size g, called blocks, Ay — 0 — o0 — o0 —
such that every pair of points is Az 0 —— 00— —
. . Ay: @« —— —— o0 @
contained in exactly one block. A —0——o—®
@ Such a system is an example of ﬁg _ : ° oo h
a balanced incomplete block design.

V.

Observation: There are b = (3)/(]) blocks in 3 and each point is contained in
(r—1)/(g—1) of them. Moreover, any two blocks intersect in at most one point.
For more on Steiner systems and their properties, see the following papers:

G.D. Cohen anf P. Frankl, On generalized perfect codes and Steiner systems, Annals
of Discrete Mathematics, 18, pp. 197-200, 1983.

G.D. Cohen and B. Montaron, Empilements parfaits de boules dans les espaces vec-
toriels binaires, Compte Rendus de I’ Academie des Sciences, 288, pp. 579-582, 1979.

B.Montaron and G.D. Cohen, Codes parfaits binaires a plusieurs rayons, Revue du
Centre d’Etudes Théoriques de la Détection et Communication, NS1979-2, pp. 35-58, 1979.



PIR codes from Steiner systems
Let V be a set with r elements, _

called points. A Steiner system
S8(2,4,r) is a collection B of sub- A ???????
sets of V of size g, called blocks, Ay — 0 — o0 — o0 —
such that every pair of points is 235 e——o0——
contained in exactly one block. A‘s‘; * o o * :
@ Such a system is an example of ﬁ? _ : ° oo h
a balanced incomplete block design.

Observation: There are b = (3)/(]) blocks in 3 and each point is contained in
(r—1)/(g—1) of them. Moreover, any two blocks intersect in at most one point.

Conclusion: The blocks of a Steiner system S(2,4,s) form an almost disjoint
(s—1)/(g—1)-cover of [s]. Therefore, when such Steiner systems exist, we have
s(s—1)  s(k—1)?

q(g—-1)  s+k

p(s,k) < number of blocks in §(2,4,s) =

wherek = (s—1)/(g—1) + 1.



PIR codes from Steiner systems
Let V be a set with r elements, _

called points. A Steiner system
S8(2,4,r) is a collection B of sub- ???????
sets of V of size g, called blocks, —e—_0o— 90—
such that every pair of points is o —— 00— —
contained in exactly one block. : e _ o : :
@ Such a system is an example of _ : : : : :
a balanced incomplete block design.

Observation: There are b = (3)/(]) blocks in 3 and each point is contained in
(r—1)/(g—1) of them. Moreover, any two blocks intersect in at most one point.

Conclusion: The blocks of a Steiner system S(2,4,s) form an almost disjoint
(s—1)/(g—1)-cover of [s]. Therefore, when such Steiner systems exist, we have

_ _1)2
p(s, k) < number of blocks in §(2,4,s) = ;E;_?) = ° (sk—l—;)
wherek = (s—1)/(g— 1) + 1. But, by Fisher’s inequality (#blocks > # points), this
gives p(s, k) < s at best
Q We can do much better with Steiner systems!



PIR codes from Steiner systems
[Example: Fano plane §(2,3,7)

Let V be a set with r elements,
called points. A Steiner system
S(2,4,r) is a collection B of sub-
sets of V of size g, called blocks,
such that every pair of points is
contained in exactly one block.

@ Such a system is an example of
a balanced incomplete block design.

X
e | &>

1

2A3A4A5Ag A7

Lemma 10: PIR codes from Steiner systems

Let S(2,q,r) be a Steiner system. For eachv €V, let A, C B be the set of blocks
that contain v. Then the sets {A, : v € V} form an almost disjoint g-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |A, N A,| = 1, and the sets {A; : v € V} are almost disjoint. O



PIR codes from Steiner systems
Let V be a set with r elements, _

called points. A Steiner system

S(2,4,r) is a collection B of sub- fil 2AsAsAs sy
.
[ ]

S

sets of V of size g, called blocks, — e —
such that every pair of points is

contained in exactly one block.

°
@ Such a system is an example of :
a balanced incomplete block design.

Lemma 10: PIR codes from Steiner systems

Let S(2,q,r) be a Steiner system. For eachv €V, let A, C B be the set of blocks
that contain v. Then the sets {A, : v € V} form an almost disjoint g-cover of [b].

Proof. For any pair of points u and v, there is only one block that contains
both. Hence |A, N A,| = 1, and the sets {A; : v € V} are almost disjoint. O

By Wilson's theorem, a Steiner system S(2,4, 1) exists for all sufficiently large r
whenever (g—1)|(r—1) and g(g—1)|r(r—1). Combining this theorem with Lem-

ma 10 and Corollary 9, we have:
p(s, k) = O (\/E) for all fixed k




PIR codes from bipartite graphs
Let G = (U,V; &) be a bipartite graph, with bipartition U,V and edge set £. We
consider the neighborhoods N(v) = {ue U : (u,v) € £} of vertices in V.

Lemma11: PIR codes from bipartite graphs

If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v eV}, form an almost disjoint k-cover of U, wherek = min,,c(; deg(u).
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Let G = (U,V; &) be a bipartite graph, with bipartition U,V and edge set £. We
consider the neighborhoods N(v) = {ue U : (u,v) € £} of vertices in V.

Lemma11: PIR codes from bipartite graphs

If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v eV}, form an almost disjoint k-cover of U, wherek = min,,c(; deg(u).

Pro Of . Assume to the contrary that there are vertices v, v € V such that
IN(v1) "N(v2)| > 2. Let uq, up be some two vertices in N(v1) N N(v;). Then the
induced subgraph on {v, vy, u1, 13 } is Ky » which is a 4-cycle in G. 0

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from bipartite graphs
Let G = (U,V; &) be a bipartite graph, with bipartition U,V and edge set £. We
consider the neighborhoods N(v) = {ue U : (u,v) € £} of vertices in V.

Lemma11: PIR codes from bipartite graphs

If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v eV}, form an almost disjoint k-cover of U, wherek = min,,c(; deg(u).

Pro Of . Assume to the contrary that there are vertices v, v € V such that
IN(v1) "N(v2)| > 2. Let uq, up be some two vertices in N(v1) N N(v;). Then the
induced subgraph on {v, vy, u1, 13 } is Ky » which is a 4-cycle in G. 0

@ Given s and k, we would like to construct a bipartite graph G = (U,V;€)
with the following properties:

u| = s min, ¢y deg(u) = k—1 girth(G) > 6

If we can do this, then p(s, k) < |V|by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph?

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.



PIR codes from bipartite graphs
Let G = (U,V; &) be a bipartite graph, with bipartition U,V and edge set £. We
consider the neighborhoods N(v) = {ue U : (u,v) € £} of vertices in V.

Lemma11: PIR codes from bipartite graphs

If G has no 4-cycles, then the neighborhoods of vertices in V, namely the set
{N(v) : v eV}, form an almost disjoint k-cover of U, wherek = min,,c(; deg(u).

Pro Of . Assume to the contrary that there are vertices v, v € V such that
IN(v1) "N(v2)| > 2. Let uq, up be some two vertices in N(v1) N N(v;). Then the
induced subgraph on {v, vy, u1, 13 } is Ky » which is a 4-cycle in G. 0

@ Given s and k, we would like to construct a bipartite graph G = (U,V;€)
with the following properties:

luj = s min, ey deg(u) = k—1 girth(G) > 6

If we can do this, then p(s, k) < |V| by Corollary 10. What is the least possi-
ble number of vertices in V for such a graph? Using the best known results

on bipartite cages, we get:
p(s, k)= O (\/S_) for all fixed k

Note: [DGRS15] use a similar construction for batch codes, but with girth(G) > 8.




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

To learn more about constant-weight codes and their properties, consult the fol-

lowing papers:
Ch. Bachoc, V. Chandar, G.D. Cohen, P.Solé, and A. Tchamkerten, On bounded
weight codes, IEEE Trans. Information Theory, 57, pp. 6780-6787, October 2011.

G.D. Cohen, P.Solé, and A. Tchamkerten, Heavy weight codes, Proceedings IEEE
International Symp. Information Theory, pp. 1120-1124, Austin, TX., June 2010.



PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:

@ d = 2w if and only if any two codewords have disjoint supports:

—— E—




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
@ d = 2w if and only if any two codewords have disjoint supports:
il

@ 4 = 2w — 2 iff any two codewords intersect in at most one position:

— T E—




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
@ d = 2w if and only if any two codewords have disjoint supports:

—— E—

@ d = 2w — 2 iff any two codewords intersect in at most one position:

— T E—

Now let s = Ay(n,2w—2,w), and consider the s X n matrix having the code-
words of C as its rows: n

W W W W | Asthe weight of each rowis w,
s columns form a w-cover of [s].




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Observations:
@ d = 2w if and only if any two codewords have disjoint supports:

—— E—

@ d = 2w — 2 iff any two codewords intersect in at most one position:

— T E—

Now let s = Ay(n,2w—2,w), and consider the s X n matrix having the code-
words of C as its rows: n

|  As the row supports are almost
sl " disjoint, the column supports
are also almost disjoint.




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = Ap(n,2w—2,w), and consider the s X n matrix having the code-
words of C as its rows: n

As the row supports are almost
disjoint, the column supports
are also almost disjoint.

Theorem 12: PIR codes from constant-weight codes
p(s,k) < the smallest n such that Ay(n,2k—4,k—1) > s

supports are almost disjoint (k—1)-cover of [s]




PIR codes from constant-weight codes

Definition: Constant-weight codes

Let Ay(n,d,w) be the number of codewords in the largest binary code C of length
n and minimum distance d such that all the codewords of C have weight w.

Now let s = Ap(n,2w—2,w), and consider the s X n matrix having the code-
words of C as its rows: n

As the row supports are almost
disjoint, the column supports
are also almost disjoint.

Theorem 12: PIR codes from constant-weight codes
p(s,k) < the smallest n such that Ay(n,2k—4,k—1) > s

supports are almost disjoint (k—1)-cover of [s]

For example, for k = 3 we conclude that p(s, 3) is upper bounded by the small-
est 11 such that 71(n—1) > 2s. In general, we again have p(s,k) = O (v/s ).



Tables of short PIR codes

number k of servers emulated

O
i 1 23 4 5 6 7 8 9 10 11 12 13 14 15

v 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22

0 B 1 3 4 7 8 10 11 14 15 17 18 21 22 24 25

+ ‘s 1 4 5 7 8 10 11 15 16 19 20 22 23 25 26
] 8 1 4 5 7 8 13 14 17 18 20 21 23 24 25 26

O N 1 45 7 8 14 15 18 19 21 22 28 29 32 33

(9} vl 1 5 6 7 8 15 16 20 21 22 23 30 31 35 36

g 8 1 5 6 11 12 15 16 24 25 29 30 35 36 39 40

o P 1 5 6 12 13 15 16 25 26 30 31 37 38 40 41
< OB 1 5 6 13 14 15 16 26 27 31 32 39 40 41 42

"g'g' N8 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
C BvYA 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
w WEN 1 6 7 13 14 21 22 30 31 37 38 39 40 41 42
© BEN 1 6 7 14 15 21 22 30 31 37 38 39 40 41 42

“ WEN 1 6 7 15 16 21 22 30 31 37 38 39 40 41 42

:I-‘.) i) 1 7 8 16 17 21 22 30 31 45 46 51 52 55 56

o mve 1 7 8 16 17 21 22 30 31 46 47 55 56 60 61
E Ikl 1 7 8 16 17 21 22 30 31 47 48 56 57 61 62

= IR 1 7 8 16 17 21 22 30 31 48 49 57 58 62 63

c P 1 7 8 16 17 21 22 30 31 49 50 58 59 63 64

A 1 7 8 18 19 27 28 30 31 52 53 59 60 70 71

bl 1 8 9 18 19 28 29 30 31 53 54 61 62 71 72

pell 1 8 9 19 20 28 29 30 31 54 55 62 63 73 74

Z9 1 8 9 19 20 28 29 30 31 55 56 63 64 74 75

Redundancy p(s, k) of the best-known PIR codes



Tables of short PIR codes

number k of servers emulated

O
123 4
b 1 3 4 6
o Bl 134 7
Y145 7
< Bl 145 7
o R 145 7
o Wl 156 7
2y 156 11
S Bl 156 12
< MON 1 5 6 13
= I8 1 6 7 13
= WKl 1 6 7 13
o« WER 1 6 7 13
©C B8 1 6 7 14
v BEl 1 6 7 15
SEE 17 8 16
o WY 1 7 8 16
c Bl 17816
= By 17 8 16
c B 17 8 16
8 1 7 8 18
8 1 8 9 18
X8 1 8 9 19
8 1 8 9 19 20 28 29 30 31 55 56 63 64 74 75

Redundancy p(s, k) of the best-known PIR codes



Tables of short PIR codes

number k of servers emulated

COMNMOODHOVOANDNODDAH ANV D
SIS S0 GO S ERIG SO QIS EalLo Eel ST ERI S GRS Gl =
B AV G OSSO 16 < < < < 05 < < o F < < < < F
CODOMODVFON AL MM HMAOLO DO
SRS RIS EAS Ed il 55 S LA S R S Rl I =I5
15 — OVIN SO \SIBLO 16 < < < 05 0 < < < < f < < F
DOMIOD NN D SHD W OO VN LOLO O Ol H DY
SO D QO SIN O\ ) O 0O N N O G 000Dy \O
HSBIOBBIBOBISFFF B SF FFF S35
COOOONNRX—TIONINOINDAHTOOHINO N
SRS E ORISR~ TS = N S S S = e S R
GBSOV SISO IBIOLE F S F Fed o3 F fi i Ffed s o5 e5 o3
SOOI FHOLODN AN 0000 \O D\ 00 O L) O\ €D
SIOIS © GINOIGN D S OUSH — GNP~ 19 00 B\ Le L0 Lo 6R) ¢
ISENOSCITE R I A Tl R e oo o)
OO O D HMN ) OO LY SHDY — — — €)LD 00 — LD O
SO R Dy SO NG GPI - SPI © o0 i c0 B0 RSt i St SRl o
TOSWISFFFHFFFedcdedeciedeiededededesed
COOOONOMNANDO A0 — I\ HAI AN )LD 00 — 1O O
S0 B 885 S S0l D oL o Sl OIS Or GOl P~ OO SHEHGRI N
ShwHdtFnmdmarsaaaaanainia
OCONINOOVOPLRND = HO WO DNH VDL
SO CNFORONTIND N —SRON SN H DN

[colNeR NesNerNesNeoNesl o NalNesNalla otk otk oK ol alNo ol Na N ol Kol o'l

COMNOOMIHFONOHIONO O = HIN —LONDN AN
OIOONION—R OO NOIOHNAN—~F—O AN NN —

[SNITORS <Y ol erNesa Kol F otk o\ Kol Ko KoK ol N K o\ Kol o Ko Kol N Kot Kol

OCONMNOONIHOFONDNONNOOHANLO OO0
OOVOOVUN—IOHHANAOO OO OG0 0 S\ 0 00

otFonaaNaN AN O e e e e

COMINONOVMNOVVOOOODOFAFHO VAN
CONDNF—HONOMOMM IO OO OO Q) 00 00 CO 00 00 O DN

oo AN — e e

COMNIONOIONOHOFONODNHANO 0~
CONANCOCOXONO OO IFHIOHHIAHHIOHON

HeOANANA

COOOOONMN—TMOOIOOVNOFH—HANLOM\OLO N
OO OVONVIOUIOHFAHHFOMN OO NN

OANANAN

COMUOONIHNO—ONVONNOOOLOLOLOLO SH <H
OCIONANN—TH—"A—" "0 00O OOOODOOOOO

R R e R R R R e R R R R R R R R R R R K e K

—HANNOFHIOONOANO AN FHIOONONO =N H

Hrad A A A A A A AT AN AN AN AN

syred aseqejep jo s rdqunu
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Tables of short PIR codes
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Thank you for your attention!

Please send you queries...



