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”Les codes mènent à tout”
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”Les codes mènent à tout”
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Here ?

You meet codes everywhere even where you do not expect it
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Reading this ?
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0 Introduction

A subset A of {0, 1}n is called monotone provided if x 2 A,x0 2 {0, 1}n, xi 
x0i for i = 1, . . . , n then x0 2 A. For 0  p  1, define µp the product mea-
sure on {0, 1}n with weights 1� p at 0 and p at 1. Thus

(0.1) µp

�
{x}

�
= (1� p)n�jpj where j = #{i = 1, . . . , n | xi = 1} .

If A is monotone, then µp(A) is clearly an increasing function of p. Con-
sidering A as a “property”, one observes in many cases a threshold phe-
nomenon, in the sense that µp(A) jumps from near 0 to near 1 in a short
interval when n ! 1. Well known examples of these phase transitions
appear for instance in the theory of random graphs. A general understand-
ing of such threshold e↵ects has been pursued by various authors (see for
instance Margulis [M] and Russo [R]). It turns out that this phenomenon
occurs as soon as A depends little on each individual coordinate (Russo’s
zero-one law). A precise statement was given by Talagrand [T] in the form
of the following inequality.

Define for i = 1, . . . , n

(0.2) Ai =
�
x 2 {0, 1}n | x 2 A, Uix 62 A

 

where Ui(x) is obtained by replacement of the ith coordinate xi by 1 � xi

and leaving the other coordinates unchanged. Let

(0.3) � = sup
i=1,... ,n

µp(Ai) .

Then

(0.4)
dµp(A)

dp
� c

log(1/�)

p(1� p) log[2/p(1� p)]
µp(A) [1� µp(A)]

where c > 0 is some constant.
Defining for i = 1, . . . , n the functions

(0.5) "i(x) = 2xi � 1

one gets
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What I should have read
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Doing this ?
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Introduction : Codes nothing but codes

I Polar codes (Arıkan 2009): attain the symmetric capacity of any memoryless
channel.

I Probability of error after decoding O
(

2−N
1/2−ε

)
.

I Improving this probability at a reasonable algorithmic cost.

I Changing the construction a little bit and using algebraic codes with a soft
decoder: Reed-Solomon codes with the Koetter-Vardy decoder.
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Polar codes ”à la Dumer”

Definition 1. [(U |U + V ) code construction] Let U be an [n, ku, du]q code and
V be an [n, kv, dv]q code. We define the (U | U + V )-construction of U and V as
the linear code:

C = {(u | u + v) | u ∈ U and v ∈ V } .
The code C has parameters [2n, ku + kv,min {2du, dv}]q. A generator matrix of C
is: (

Gu Gu
0 Gv

)
∈ F(ku+kv)×2n

q

where Gu and Gv are generator matrices of U and V respectively.
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(Soft) Decoding (U |U + V ) codes

I We send (u|u + v), we receive (y1,y2)

I Step 1, decoding the V -code : decode y2 − y1 → v, probabilistic model :

Prob(v(i) = α|y1(i), y2(i)) =
∑

β∈Fq

Prob(u(i) = β|y1(i))Prob(u(i)+v(i) = α+β|y2(i))

(1)

I Step 2: y2 → y2 − v

I Step 3, decoding the U -code : probabilistic model for decoding the U -code

(two noisy versions of u : y1 and y′2
def
= y2 − v)

Prob(u(i) = α | y1(i), y′2(i)) =
Prob(u(i) = α | y1(i))Prob(u(i) = α | y′2(i))∑
β∈Fq Prob(u(i) = β | y1(i))Prob(u(i) = β | y′2(i))

(2)
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Ingredient 1 : Arıkan’s conservation law

I Model : symbol is transmitted correctly with probability 1− p and erased with
probability p. Channel capacity 1− p

I Noise model for the V -decoder: erasure channel of probability 2p− p2

I Noise model for the U -decoder: erasure channel of probability p2

Nothing is lost in terms of capacity with this strategy

1− p =
(1− 2p+ p2) + 1− p2

2

I For other channels this also holds (Arıkan conservation law of mutual
information)
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Channel polarization

W memoryless channel with input alphabet Fq and output alphabet Y

• W 0 channel viewed by the V -decoder;

• W 1 channel viewed by the U -decoder.

W a0a1...an def
= (W a0a1...an−1)

an

0.64

(U|U+V)

V U

W

W

W 10

0.4

0.16

Figure 1: Example of an erasure channel with p = 0.4
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Example

11

W

0.4

W
0 W1

0.64 0.16

W WW W

0.8704 0.4096 0.2944 0.0256

00 01 10
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Example (II)

0.170.967 0.941 0.570.878 0.42 0.31 0.750.03 0.008 0.090.002 0.001 0.00000040.25

0.4

0.160.64

0.8704 0.4096 0.02560.2944

0.983 0.757 0.651 0.168 0.00060.502 0.087 0.051

0.9997
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Polar codes

I Standard polar codes = recursive (u|u + v) construction where all the leaves
are codes of length 1 (=symbols) and of rate 1 for the good channels and 0 for
the bad channels.
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Polarization

Bhattacharyya parameter Z (W )

Z (W )
def
=

1

q(q − 1)

∑

x,x′∈Fq,x′ 6=x

∑

y∈Y

√
W (y|x)W (y|x′)

Theorem 1. [Şaşoğlu-Telatar-Arıkan] For a symmetric channel of capacity C
with q-ary inputs (q prime) and for all 0 < β < 1

2

lim
`→∞

1

N

∣∣∣{i ∈ {0, 1}` : Z
(
W i
)
6 2−N

β}
∣∣∣ = C,

where N
def
= 2`

⇒ probability of error of a standard polar code 2−O
(
N1/2−ε

)
where N = length of

the polar code. Follows from

Pe 6 (q − 1)Z (W )
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Changing a little bit the structure

I Polar codes = recursive (u|u + v) construction where all leaves are symbols.

I Our codes = recursive (u|u + v) construction where all leaves are codes that
admit an efficient soft decoder.

I Our choice : Reed-Solomon codes with the Koetter Vardy decoder.
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Reed-Solomon codes

Definition 2. [Reed-Solomon code] Let x1, . . . , xn be n distinct elements in
Fq. The Reed-Solomon code C associated to x1, . . . , xn of dimension k is the
[n, k, d = n− k + 1]q code defined by

C = {(P (xi)16i6n : degP 6 k, P ∈ Fq[X]}
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Reed-Solomon codes
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IG Codes

Irving and Gustave codes
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The Koetter-Vardy decoder

I Soft (list) decoder of a Reed-Solomon code based on the reliability matrix Π
associated to the received word y = (y1, . . . , yn) after x = (x1, . . . , xn) has
been sent:

Π
def
= (Prob(xj = α|yj)) α∈Fq

16j6n

I decoding algorithm that outputs a list that contains the codeword c ∈ C if

〈Π, bcc〉√
〈Π,Π〉

>
√
k − 1 + o(1)

where bcc represents a q × n matrix with entries ci,α = 1 if ci = α, and 0
otherwise; and 〈A,B〉 denotes the inner product of the two q × n matrices A
and B, i.e.

〈A,B〉 def
=

q∑

i=1

n∑

j=1

ai,jbi,j.
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Symmetric channels

x = symbol sent through the channel
y = the received symbol

π = (Prob(x = α|y))α∈Fq

Definition 3. [discrete symmetric channel with q-ary inputs] A DMC with q-
ary inputs is said to be symmetric if and only if for any α in Fq we have

p(α)Prob(π = p) = p(0)Prob(π = p+α). (3)

where p+α = (p(β + α))β∈Fq.
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Analysis of the Koetter-Vardy decoder over symmetric
channels

We clearly have
E (〈Π,Π〉) = nE ||π||22

Lemma 1. Over a symmetric channel

E (〈Π, b0c〉) = nE ||π||22

〈Π, bcc〉√
〈Π,Π〉

≈
√
nE ||π||22 >

√
k − 1 + o(1)
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Analysis of the Koetter-Vardy decoder

Capacity of the Koetter-Vardy decoder for a certain symmetric channel

CKV = E ||π||22

For instance consider the q-ary symmetric channel of crossover probability p

CKV = (1− p)2 + (q − 1)
p2

(q − 1)2
= (1− p)2 +

p2

q − 1
= (1− p)2 +O

(1
q

)
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Analysis of the Koetter-Vardy decoder

Theorem 2. Let (Cn)n>1 be an infinite family of Reed-Solomon codes of rate
6 R. Denote by qn the alphabet size of Cn that is assumed to be a non
decreasing sequence that goes to infinity with n. Consider an infinite family of
qn-ary symmetric channels with associated probability error vectors πn such that

E
(
||πn||22

)
has a limit as n tends to infinity. Let

CKV
def
= lim

n→∞
E
(
||πn||22

)
.

This infinite family of codes can be decoded correctly by the Koetter-Vardy
decoding algorithm with probability 1− o(1) as n tends to infinity as soon as there
exists ε > 0 such that

R 6 CKV − ε.
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Results up to 2 levels
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Results up to 3 levels
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Finite length analysis

Theorem 3. If we decode a Reed-Solomon code of length n and rate R <

E
(
||π||22

)
over a symmetric channel with the Koetter-Vardy decoder, the probability

that it outputs in its list the right codeword is upper-bounded by

O
(
e−Kδ

2n
)

for some constant K and where δ = E
(
||π||22

)
−R.
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Finite length analysis (II)

Proposition 1. For a symmetric channel

1− CKV 6 (q − 1)Z (W )

Follows rather directly from the well known fact that the Rényi entropy

Hα(X)
def
=

1

1− α log
∑

x

p(x)α

is decreasing in α.
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Polarization with RS leaves

I ` levels of polarization, leaves that are RS codes of maximal length q, n
def
= 2`

I Assume that q is prime.

For a symmetric channel of capacity C and for all 0 < β < 1
2

lim
`→∞

1

n

∣∣∣{i ∈ {0, 1}` : Z
(
W i
)
6 2−n

β}
∣∣∣ = C

⇒
lim
`→∞

1

n

∣∣∣{i ∈ {0, 1}` : E
(∣∣∣∣πi

∣∣∣∣2
2

)
> 1− (q − 1)2−n

β}
∣∣∣ = C

I Take RS codes of rate 1− ε for those leaves.

I Take RS codes of rate 0 for the other leaves.
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Polarization with RS leaves (II)

I Non zero leaves are decoded wrongly with probability p = e−Kε
2q when

(q − 1)2−n
β
6 1

2ε say.

I Probability of failure for those leaves much better that if we had decoded
symbol leaves at level `+ logq (probability of order 2−

√
qn).

I Overall rate of the code ≈ C(1− ε)
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Finite length performance

I Get rather close to the channel capacity even with only 4 levels for q =
64, 128, 256 over the q-ary symmetric channel.

I Simulations : work in progress.
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Finite alphabet Koetter-Vardy capacities
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Going further: algebraic geometry codes

I Problem with RS codes : length 6 q.

I Algebraic geometric codes : more or less the same behaviour as RS codes but
with an unbounded length and a fixed alphabet size.

I Allows to replace in the previous strategy q by an arbitrary length N :

p = e−Kε
2N when (q − 1)2−n

β
6 1

2ε.
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Other strategies related to changing the kernel of polarization

I (U |U + V )→ (U |U + V |U + V +W )

I Improves the behaviour at the origin for the decoder.

34/??



Complexity of the Koetter Vardy decoder

I Polynomial complexity, but it amounts to solve a linear system with 6 qnm2

where m is the number unknowns...

I More precisely of order
∑
α∈Fq,j∈{1,...,n}m

2
α,j where mαj ≈ proportional to

Πα,j.

I Clearly better to perform this task over an iterated (u|u + v) construction
based on RS codes than on a RS code of the same length.

I Polarization process helps a lot to keep low multiplicities for the high rate parts
of the iterated (u|u + v) construction.
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What kind of code is needed ?

The main ingredient: a family of codes of rate R = 1 − ε with an efficient soft
decoder for any memoryless channel such that the probability that the decoder
fails is

O
(
e−Kδ

2n
)

for some constant K and where δ = capacity of the channel−R.
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Perspectives and conclusion

I Finite length behaviour over various channels by using only a few levels of the
iterated (u|u + v) construction.

I Studying various multiplicity choices for the Koetter-Vardy decoder.

I This strategy is of course not restricted to prime lengths.

I Gives in a natural way an exponential decay of the probability of error after
decoding with a fixed number of levels.

I Scaling of the error probability in terms of gap ε to capacity ?

I Non negligible gain of (U |U + V |U + V +W ) over (U |U + V ) ?

I Study more precisely the error probabilities for algebraic geometry codes

I This strategy can be followed by using other decoders and/or other codes

I Applications to rate distorstion codes also for instance.
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