Attaining the capacity with Reed-Solomon codes through the $(U \mid U+V)$ construction and Koetter-Vardy soft decoding

Irene Márquez-Corbella, J.-P. Tillich

Inria de Paris, projet SECRET
July 5, 2016
Eñiá

"Les codes mènent à tout"

AT THE FOREFRONT OF COMMUNCATIONS RESEARCH

Claude Gueguen Director of Research

- Born 1941, Rennes (France)
- Graduated trom Ecole Nationale Superieure des Telécommunications 1965.

- Research ongineer, EEDole Nationale Supérieure d'A
- At T telecom Paris since 1970 :
-At Telecom Paris since 1970 :
then Director of Ressearch and Deputy Director of the Institute.
- IEEE Fellow.

Personal areas of research:
automatic control, systems theory, signal and speech processing.
THE SCIENTIFIC CONTEXT

- TELECOM Paris occupies a strategic position in today's major
areas of scientific inquiry. The areas of scientific inquiry. The
impacto fthe mathematician Claude Impactorthermathematician Claualy
E. Shanon's work is gradull
causing conventional concepts causing conventional concepts of
force and energy to give way to those of information, code and message in the interpretation of
complex systems. These concepts complex xsystems. These conceppis
are shaping the new currents of scientific thought and have found
applications in areas as diverse as applicationn in areaes as diverse as
communications, linguistics, biology and economics. The concept o ainformation networky has acquired
a central structural role in the corporation and in society as large, now rightly referred to to
"information society".
- We are subjected to an ever Increasing flow of information and
data, whose production, consumption and transmission pose a challenge tothe engineer. Thistrend saccelerating under the impulse of
lechnological advances in areas technological advances in areas space, which are expanding the
capacity of communication channels and memory storage media. But the abundance of raw, unprocessed data is nothing but
"noise". To give users effective accesstorelevant information- that is, to produce knowledge from data Processing and understanding are also required. Networks mus
inevitably become "inteligent".

"Les codes mènent à tout"

2/??

Here ?

You meet codes everywhere even where you do not expect it

3/??

Reading this ?

GAFA, Geom. funct. anal. Vol. 7 (1997) $438-461$
$1016-433 \mathrm{X} / 97 / 030438-248 \$ 1.50+0.20 / 0$

© Birkhäuser Verlag, Basel 1997

GAFA Geometric And Functional Analysis
influences of variables and threshold INTERVALS UNDER GROUP SYMMETRIES

J. Bourgain and G. Kalai

0 Introduction

A subset A of $\{0,1\}^{n}$ is called monotone provided if $x \in A, x^{\prime} \in\{0,1\}^{n}, x_{i} \leq$ x_{i}^{\prime} for $i=1, \ldots, n$ then $x^{\prime} \in A$. For $0 \leq p \leq 1$, define μ_{p} the product measure on $\{0,1\}^{n}$ with weights $1-p$ at 0 and p at 1 . Thus
(0.1) $\mu_{p}(\{x\})=(1-p)^{n-j} p^{j}$ where $j=\#\left\{i=1, \ldots, n \mid x_{i}=1\right\}$.

If A is monotone, then $\mu_{p}(A)$ is clearly an increasing function of p. Considering A as a "property", one observes in many cases a threshold phe-
nomenon, in the sense that $\mu_{p}(A)$ jumps from near 0 to near 1 in a short interval when $n \rightarrow \infty$. Well known examples of these phase transitions appear for instance in the theory of random graphs. A general understanding of such threshold effects has been pursued by various authors (see for instance Margulis $[M]$ and Russo $[R]$). It turns out that this phenomenon occurs as soon as A depends little on each individual coordinate (Russo's ero-one law). A precise stat
Define for $i=1, \ldots, n$
Define for $i=$
$A_{i}=\left\{x \in\{0,1\}^{n} \mid x \in A, U_{i} x \notin A\right\}$
where $U_{i}(x)$ is obtained by replacement of the $i^{\text {th }}$ coordinate x_{i} by $1-x_{i}$ and leaving the other coordinates unchanged. Let
${ }^{(0.3)}$
(0.4) $\quad \frac{d \mu_{p}(A)}{d p} \geq c \frac{\log (1 / \gamma)}{p(1-p) \log [2 / p(1-p)]} \mu_{p}(A)\left[1-\mu_{p}(A)\right]$
where $c>0$ is some constant.

Defining for $i=1, \ldots, n$ the functions
(0.5)
$\varepsilon_{i}(x)=2 x_{i}-1$
one gets

4/??

What I should have read

The Threshold Probability of a Code
Gilles Zémor, Member, IEEE, and Gérard D. Cohen, Senior Member, IEEE

5/??

Doing this ?

Introduction : Codes nothing but codes

- Polar codes (Arıkan 2009): attain the symmetric capacity of any memoryless channel.
- Probability of error after decoding $O\left(2^{-N^{1 / 2-\epsilon}}\right)$.
- Improving this probability at a reasonable algorithmic cost.
- Changing the construction a little bit and using algebraic codes with a soft decoder: Reed-Solomon codes with the Koetter-Vardy decoder.

Polar codes "à la Dumer"

Definition 1. [$(U \mid U+V)$ code construction] Let U be an $\left[n, k_{u}, d_{u}\right]_{q}$ code and V be an $\left[n, k_{v}, d_{v}\right]_{q}$ code. We define the $(U \mid U+V)$-construction of U and V as the linear code:

$$
\mathcal{C}=\{(\mathbf{u} \mid \mathbf{u}+\mathbf{v}) \mid \mathbf{u} \in U \text { and } \mathbf{v} \in V\} .
$$

The code \mathcal{C} has parameters $\left[2 n, k_{u}+k_{v}, \min \left\{2 d_{u}, d_{v}\right\}\right]_{q}$. A generator matrix of \mathcal{C} is:

$$
\left(\begin{array}{c|c}
G_{u} & G_{u} \\
\hline \mathbf{0} & G_{v}
\end{array}\right) \in \mathbb{F}_{q}^{\left(k_{u}+k_{v}\right) \times 2 n}
$$

where G_{u} and G_{v} are generator matrices of U and V respectively.

(Soft) Decoding $(U \mid U+V)$ codes

- We send $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$, we receive $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)$
- Step 1, decoding the V-code : decode $\boldsymbol{y}_{2}-\boldsymbol{y}_{1} \rightarrow v$, probabilistic model :

$$
\begin{equation*}
\operatorname{Prob}\left(v(i)=\alpha \mid y_{1}(i), y_{2}(i)\right)=\sum_{\beta \in \mathbb{F}_{q}} \operatorname{Prob}\left(u(i)=\beta \mid y_{1}(i)\right) \operatorname{Prob}\left(u(i)+v(i)=\alpha+\beta \mid y_{2}(i)\right. \tag{1}
\end{equation*}
$$

- Step 2: $\boldsymbol{y}_{2} \rightarrow \boldsymbol{y}_{2}-\boldsymbol{v}$
- Step 3, decoding the U-code : probabilistic model for decoding the U-code (two noisy versions of $\boldsymbol{u}: \boldsymbol{y}_{1}$ and $y_{2}^{\prime} \xlongequal{\text { def }} \boldsymbol{y}_{2}-\boldsymbol{v}$)
$\operatorname{Prob}\left(u(i)=\alpha \mid y_{1}(i), y_{2}^{\prime}(i)\right)=\frac{\operatorname{Prob}\left(u(i)=\alpha \mid y_{1}(i)\right) \operatorname{Prob}\left(u(i)=\alpha \mid y_{2}^{\prime}(i)\right)}{\sum_{\beta \in \mathbb{F}_{q}} \operatorname{Prob}\left(u(i)=\beta \mid y_{1}(i)\right) \operatorname{Prob}\left(u(i)=\beta \mid y_{2}^{\prime}(i)\right)}$

Ingredient 1 : Arıkan's conservation law

- Model : symbol is transmitted correctly with probability $1-p$ and erased with probability p. Channel capacity $1-p$
- Noise model for the V-decoder: erasure channel of probability $2 p-p^{2}$
- Noise model for the U-decoder: erasure channel of probability p^{2}

Nothing is lost in terms of capacity with this strategy

$$
1-p=\frac{\left(1-2 p+p^{2}\right)+1-p^{2}}{2}
$$

- For other channels this also holds (Arıkan conservation law of mutual information)

10/??

Channel polarization

W memoryless channel with input alphabet \mathbb{F}_{q} and output alphabet

- W^{0} channel viewed by the V-decoder;
- W^{1} channel viewed by the U-decoder.

Figure 1: Example of an erasure channel with $p=0.4$

11/??

Example

Example (II)

Polar codes

- Standard polar codes $=$ recursive $(u \mid u+v)$ construction where all the leaves are codes of length 1 (=symbols) and of rate 1 for the good channels and 0 for the bad channels.

14/??

Polarization

Bhattacharyya parameter $\mathcal{Z}(W)$

$$
\mathcal{Z}(W) \stackrel{\text { def }}{=} \frac{1}{q(q-1)} \sum_{x, x^{\prime} \in \mathbb{F}_{q}, x^{\prime} \neq x} \sum_{y \in \mathcal{Y}} \sqrt{W(y \mid x) W\left(y \mid x^{\prime}\right)}
$$

Theorem 1. [Șașoğlu-Telatar-Arıkan] For a symmetric channel of capacity C with q-ary inputs (q prime) and for all $0<\beta<\frac{1}{2}$

$$
\lim _{\ell \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{0,1\}^{\ell}: \mathcal{Z}\left(W^{i}\right) \leqslant 2^{-N^{\beta}}\right\}\right|=C
$$

where $N \stackrel{\text { def }}{=} 2^{\ell}$
\Rightarrow probability of error of a standard polar code $2^{-\mathcal{O}\left(N^{1 / 2-\epsilon}\right)}$ where $N=$ length of the polar code. Follows from

$$
P_{e} \leqslant(q-1) \mathcal{Z}(W)
$$

$15 / ? ?$

Changing a little bit the structure

- Polar codes $=$ recursive $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$ construction where all leaves are symbols.
- Our codes $=$ recursive $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$ construction where all leaves are codes that admit an efficient soft decoder.
- Our choice : Reed-Solomon codes with the Koetter Vardy decoder.

16/??

Reed-Solomon codes

Definition 2. [Reed-Solomon code] Let x_{1}, \ldots, x_{n} be n distinct elements in \mathbb{F}_{q}. The Reed-Solomon code \mathfrak{C} associated to x_{1}, \ldots, x_{n} of dimension k is the $[n, k, d=n-k+1]_{q}$ code defined by

$$
\mathcal{C}=\left\{\left(P\left(x_{i}\right)_{1 \leqslant i \leqslant n}: \operatorname{deg} P \leqslant k, P \in \mathbb{F}_{q}[X]\right\}\right.
$$

17/??

Reed-Solomon codes

IG Codes

Irving and Gustave codes

19/??

The Koetter-Vardy decoder

- Soft (list) decoder of a Reed-Solomon code based on the reliability matrix Π associated to the received word $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ after $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ has been sent:

$$
\left.\Pi \stackrel{\text { def }}{=}\left(\operatorname{Prob}\left(x_{j}=\alpha \mid y_{j}\right)\right)\right)_{\substack{\alpha \in \mathbb{F}_{q} \\ 1 \leqslant j \leqslant n}}
$$

- decoding algorithm that outputs a list that contains the codeword $\mathbf{c} \in C$ if

$$
\frac{\langle\Pi,\lfloor\mathbf{c}\rfloor\rangle}{\sqrt{\langle\Pi, \Pi\rangle}} \geqslant \sqrt{k-1}+o(1)
$$

where $|\mathrm{c}|$ represents a $q \times n$ matrix with entries $c_{i, \alpha}=1$ if $c_{i}=\alpha$, and 0 otherwise; and $\langle A, B\rangle$ denotes the inner product of the two $q \times n$ matrices A and B, i.e.

$$
\langle A, B\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{q} \sum_{j=1}^{n} a_{i, j} b_{i, j} .
$$

20/??

Symmetric channels

$x=$ symbol sent through the channel
$y=$ the received symbol

$$
\pi=(\operatorname{Prob}(x=\alpha \mid y))_{\alpha \in \mathbb{F}_{q}}
$$

Definition 3. [discrete symmetric channel with q-ary inputs] A DMC with q ary inputs is said to be symmetric if and only if for any α in \mathbb{F}_{q} we have

$$
\begin{equation*}
p(\alpha) \operatorname{Prob}(\pi=\boldsymbol{p})=p(0) \operatorname{Prob}\left(\pi=\boldsymbol{p}^{+\alpha}\right) \tag{3}
\end{equation*}
$$

where $\boldsymbol{p}^{+\alpha}=(p(\beta+\alpha))_{\beta \in \mathbb{F}_{q}}$.

Analysis of the Koetter-Vardy decoder over symmetric channels

We clearly have

$$
\mathbb{E}(\langle\Pi, \Pi\rangle)=n \mathbb{E}\|\pi\|_{2}^{2}
$$

Lemma 1. Over a symmetric channel

$$
\begin{gathered}
\mathbb{E}(\langle\Pi,\lfloor\mathbf{0}\rfloor\rangle)=n \mathbb{E}\|\pi\|_{2}^{2} \\
\frac{\langle\Pi,\lfloor\mathbf{c}\rfloor\rangle}{\sqrt{\langle\Pi, \Pi\rangle}} \approx \sqrt{n \mathbb{E}\|\pi\|_{2}^{2}} \geqslant \sqrt{k-1}+o(1)
\end{gathered}
$$

22/??

Analysis of the Koetter-Vardy decoder

Capacity of the Koetter-Vardy decoder for a certain symmetric channel

$$
C_{\mathrm{KV}}=\mathbb{E}\|\pi\|_{2}^{2}
$$

For instance consider the q-ary symmetric channel of crossover probability p

$$
C_{\mathrm{KV}}=(1-p)^{2}+(q-1) \frac{p^{2}}{(q-1)^{2}}=(1-p)^{2}+\frac{p^{2}}{q-1}=(1-p)^{2}+\mathcal{O}\left(\frac{1}{q}\right)
$$

Analysis of the Koetter-Vardy decoder

Theorem 2. Let $\left(\complement_{n}\right)_{n \geqslant 1}$ be an infinite family of Reed-Solomon codes of rate $\leqslant R$. Denote by q_{n} the alphabet size of \mathcal{C}_{n} that is assumed to be a non decreasing sequence that goes to infinity with n. Consider an infinite family of q_{n}-ary symmetric channels with associated probability error vectors π_{n} such that $\mathbb{E}\left(\left\|\pi_{n}\right\|_{2}^{2}\right)$ has a limit as n tends to infinity. Let

$$
C_{K V} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \mathbb{E}\left(\left\|\pi_{n}\right\|_{2}^{2}\right)
$$

This infinite family of codes can be decoded correctly by the Koetter-Vardy decoding algorithm with probability $1-o(1)$ as n tends to infinity as soon as there exists $\epsilon>0$ such that

$$
R \leqslant C_{K V}-\epsilon
$$

Results up to 2 levels

Asymptotic result－$q=$ infinity

Results up to 3 levels

Finite length analysis

Theorem 3. If we decode a Reed-Solomon code of length n and rate $R<$ $\mathbb{E}\left(\|\pi\|_{2}^{2}\right)$ over a symmetric channel with the Koetter-Vardy decoder, the probability that it outputs in its list the right codeword is upper-bounded by

$$
\mathcal{O}\left(e^{-K \delta^{2} n}\right)
$$

for some constant K and where $\delta=\mathbb{E}\left(\|\pi\|_{2}^{2}\right)-R$.

27/??

Finite length analysis (II)

Proposition 1. For a symmetric channel

$$
1-C_{K V} \leqslant(q-1) \mathcal{Z}(W)
$$

Follows rather directly from the well known fact that the Rényi entropy

$$
H_{\alpha}(X) \stackrel{\text { def }}{=} \frac{1}{1-\alpha} \log \sum_{x} p(x)^{\alpha}
$$

is decreasing in α.

28/??

Polarization with RS leaves

- ℓ levels of polarization, leaves that are RS codes of maximal length $q, n \xlongequal{\text { def }} 2^{\ell}$
- Assume that q is prime.

For a symmetric channel of capacity C and for all $0<\beta<\frac{1}{2}$

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \frac{1}{n}\left|\left\{i \in\{0,1\}^{\ell}: \mathcal{Z}\left(W^{i}\right) \leqslant 2^{-n^{\beta}}\right\}\right| & =C \\
\Rightarrow & =C
\end{aligned}
$$

- Take RS codes of rate $1-\epsilon$ for those leaves.
- Take RS codes of rate 0 for the other leaves.

Polarization with RS leaves (II)

- Non zero leaves are decoded wrongly with probability $p=e^{-K \epsilon^{2} q}$ when $(q-1) 2^{-n^{\beta}} \leqslant \frac{1}{2} \epsilon$ say.
- Probability of failure for those leaves much better that if we had decoded symbol leaves at level $\ell+\log _{q}$ (probability of order $2^{-\sqrt{q n}}$).
- Overall rate of the code $\approx C(1-\epsilon)$

30/??

Finite length performance

- Get rather close to the channel capacity even with only 4 levels for $q=$ $64,128,256$ over the q-ary symmetric channel.
- Simulations : work in progress.

31/??

Finite alphabet Koetter-Vardy capacities

32/??

Going further: algebraic geometry codes

- Problem with RS codes: length $\leqslant q$.
- Algebraic geometric codes : more or less the same behaviour as RS codes but with an unbounded length and a fixed alphabet size.
- Allows to replace in the previous strategy q by an arbitrary length N : $p=e^{-K \epsilon^{2} N}$ when $(q-1) 2^{-n^{\beta}} \leqslant \frac{1}{2} \epsilon$.

33/??

Other strategies related to changing the kernel of polarization

- $(U \mid U+V) \rightarrow(U|U+V| U+V+W)$
- Improves the behaviour at the origin for the decoder.

34/??

Complexity of the Koetter Vardy decoder

- Polynomial complexity, but it amounts to solve a linear system with $\leqslant q n m^{2}$ where m is the number unknowns...
- More precisely of order $\sum_{\alpha \in \mathbb{F}_{q}, j \in\{1, \ldots, n\}} m_{\alpha, j}^{2}$ where $m_{\alpha j} \approx$ proportional to $\Pi_{\alpha, j}$.
- Clearly better to perform this task over an iterated $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$ construction based on RS codes than on a RS code of the same length.
- Polarization process helps a lot to keep low multiplicities for the high rate parts of the iterated $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$ construction.

35/??

What kind of code is needed ?

The main ingredient: a family of codes of rate $R=1-\epsilon$ with an efficient soft decoder for any memoryless channel such that the probability that the decoder fails is

$$
\mathcal{O}\left(e^{-K \delta^{2} n}\right)
$$

for some constant K and where $\delta=$ capacity of the channel $-R$.
$36 / ? ?$

Perspectives and conclusion

- Finite length behaviour over various channels by using only a few levels of the iterated $(\boldsymbol{u} \mid \boldsymbol{u}+\boldsymbol{v})$ construction.
- Studying various multiplicity choices for the Koetter-Vardy decoder.
- This strategy is of course not restricted to prime lengths.
- Gives in a natural way an exponential decay of the probability of error after decoding with a fixed number of levels.
- Scaling of the error probability in terms of gap ϵ to capacity ?
- Non negligible gain of $(U|U+V| U+V+W)$ over $(U \mid U+V)$?
- Study more precisely the error probabilities for algebraic geometry codes
- This strategy can be followed by using other decoders and/or other codes
- Applications to rate distorstion codes also for instance.

