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THE SCIENTIFIC CONTEXT

m TELECOM Paris occupies a
strategic position in today’s major
areas of scientific inquiry. The
impact ofthe mathematician Claude
E. Shannon’s work is . gradually
causing conventional concepts of
force and energy to give way to
those of information, code and
message in the interpretation of
complex systems. These concepts
are shaping the new currents of
scientific thought and have found
applications in areas as diverse as
communications, linguistics, biology
and economics. The concept of
«information network» has acquired
a central structural role in the
corporation and in society as large,
now rightly referred to at the
“information society".

m We are subjected to an ever-
increasing flow of information and
data, whose production, con-
sumption and transmission pose a
challengetothe engineer. Thistrend
is accelerating under the impulse of
technological advances in areas
such as electronics, optics and
space, which are expanding the
capacity of communication
channels and memory storage
media. But the abundance of raw,
unprocessed data is nothing but
"noise". To give users effective
access torelevantinformation - that
is, to produce knowledge from data
- transmission is no longer enough.
Processing and understanding are
also required. Networks must
inevitably become "intelligent".

m This change is having a deep
impact on our lifestyles and is
leading to a more specialized
division of labor, higher quali-
fications for professionals, and a
"delocalization" of resources. Man
ispresent atall points of the network,
andtransmission channels mustbe
adapted to human requirements.
Today, technical achievement
means building the transparent
network - a network that offers new
services while preserving all the
features of communication. We
therefore need intelligent, openand
user-friendly networks.

m The research programmes at
TELECOM Paris are directed
towards these goals.

oy — -
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Here ?

You meet codes everywhere even where you do not expect it
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Reading this ?
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INFLUENCES OF VARIABLES AND THRESHOLD
INTERVALS UNDER GROUP SYMMETRIES

J. BOURGAIN AND G. KALAI

0 Introduction

A subset A of {0, 1}" is called monotone provided if z € A, 2" € {0,1}", z; <
aj fori=1,... ,n then 2’ € A. For 0 <p <1, define y, the product mea-
sure on {0,1}" with weights 1 — p at 0 and p at 1. Thus
(0.1)  pp({a}) =1 —p)"7p where j=#{i=1,... . n|z=1}.
If A is monotone, then f1,(A) is clearly an increasing function of p. Con-
sidering A as a “property”, one observes in many cases a threshold phe-
nomenon, in the sense that p,(A) jumps from near 0 to near 1 in a short
interval when n — oco. Well known examples of these phase transitions
appear for instance in the theory of random graphs. A general understand-
ing of such threshold effects has been pursued by various authors (see for
instance Margulis [M] and Russo [R]). It turns out that this phenomenon
occurs as soon as A depends little on each individual coordinate (Russo’s
zero-one law). A precise statement was given by Talagrand [T] in the form
of the following inequality.

Define fori =1,...,n

0.2) A= {oe{0,1}" |w e A Usg A}

where Uj(x) is obtained by replacement of the i coordinate x; by 1 — z;
and leaving the other coordinates unchanged. Let

(0.3) v= s Hp(Ai) -
Then
(4 W, leU8) ()

>c
dp p(1 - p)log[2/p(1 - p)]
where ¢ > 0 is some constant.

Defining for ¢ = 1,... ,n the functions
(0.5) gi(r) =2z — 1
one gets

-~
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What | should have read

IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 41, NO. 2, MARCH 1995 469

The Threshold Probability of a Code

Gilles Zémor, Member, IEEE, and Gérard D. Cohen, Senior Member, IEEE

Abstract—We define and estimate the threshold probability §
of a linear code, using a theorem of Margulis originally conceived
for the study of the probability of disconnecting a graph. We then
apply this concept to the study of the erasure and Z-channels,
for which we propose linear coding schemes that admit simple
decoding. We show that 6 is particularly relevant to the erasure
channel since linear codes achieve a vanishing error probability as
long as p < 6, where p is the probability of erasure. In effect, 6 can
be thought of as a capacify notion designed for codes rather than
for channels. Binomial codes have highest possible 6§ (and achieve
capacity). As for the Z-channel, a subeapacity is derived with
respect to the linear For atransition ity in
the range |log (3/2): 1, we show how to achieve this subeapacity.
As a by-product we obtain improved constructions and existential
results for intersecting codes (linear Sperner families) which are
used in our coding schemes.

Index Terms— Threshold probability, erasure, Z-channel, in-
tersecting code, binomial code.

1. INTRODUCTION

HANNON theory often tells us that residual error prob-
abilities after decoding behave in a “threshold” manner,
jumping suddenly from almost zero to almost one as a function
of the channel error probability. However, those are results that
describe the average behavior of large sets of codes. In this
paper we investigate such a threshold phenomenon for every
binary linear code.
More precisely, let us consider a binary linear code (7, of
parameters [0, k, d], and let us choose randomly a vector v of
length n such that every i is given i the

0 o rr
Fig. 1. A threshold phenomenon.

of disconnecting a graph, when every edge is severed with
probability p.

Threshold phenomena have been extensively studied in the
context of random graphs (see, e.g., [3]). We have tried to
apply those techniques to the coding context, and draw some
conscquences.

We will first place ourselves in the context of the erasure
channel, and show that the threshold probability is a particu-
larly relevant parameter for measuring the efficiency of a linear
code. Indeed, fc:(p) is exactly the probability of meeting with
a decoding ambiguity, so that # really measures the largest
channel error probability the code can sustain. In effect, 6 can
be thought of as a capacity notion designed for codes rather
than for channels.

We will also discuss at some length an application of the

value “1” with probability p and the value “0” with probability
1—p 0<p< 1 Cal fo(p) the probability with which o
“covers” some nonzero codeword of C (i.e., is such that the
support supp (v) of v contains the support of some codeword
). In other words

felpy =% Pl —p

rewie)
where [u] denotes the weight of v and
W(C) = {v | supp (v) D supp(c). c € C, ¢ # 0}.

The behavior we focus on is that whenever C' has a
large enough minimal distance, the (nondecreasing) function
p+— fc(p) jumps suddenly from almost zero to almost one,
around a “threshold™ probability 6. We will show how this
fact stems from a theorem of Margulis, originally designed
to prove a threshold phenomenon for the probability f(p)

Manuscript received September 15, 1992; revised July 20, 1994

The authors are with Ecole Nationale Supérieure des Télécommunications,
75 634 Paris Cedex 13, France

IEEE Log Number 9408650.

threshold 10 the problem of devising efficient
codes for the asymmetrical channel (the so-called Z-channel)
where every 0 can be transformed into a | with a given
probability p, while 1's are always correctly received. In
this setting, decoding of a received vector is unambiguous
whenever the latter covers no codeword apart from the one that
was initially sent. The idea, broadly speaking, is to use linear
codes with properly chosen threshold properties: the point is,
the probability that the received vector covers some parasite
codeword should be very small whenever the proportion of
0 — 1 faulty transitions stays under a threshold value.

We will show why highly intersecting codes are a good
choice. A linear code is said to be s-intersecting if the supports
of any two nonzero codewords interscct on at least s coordinate
positions. By highly intersecting we mean codes for which s
is “large.” We shall provide some constructions, and discuss
the behavior of intersecting codes relative to the capacity of
the Z-channel. It will turn out that for high error probabilities
(e.g., 0.586 < p < 1) our schemes perform quitc acccptably.
In passing, we improve known results on intersecting codes.

Outline of the Paper and Resulis: The paper is organized
as follows. Section II describes a result of Margulis and its

0018-9448/95504.00 © 1995 IEEE.
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Introduction : Codes nothing but codes

» Polar codes (Arikan 2009): attain the symmetric capacity of any memoryless
channel.

» Probability of error after decoding O (2_N1/2_€).

» Improving this probability at a reasonable algorithmic cost.

» Changing the construction a little bit and using algebraic codes with a soft
decoder: Reed-Solomon codes with the Koetter-Vardy decoder.



Definition 1. | | LetU bean|n,k,,d,|, code and
V' be an |n, ky,d,], code. We define the (U | U + V')-construction of U and V as
the linear code:

C={(u|lu+v)|ueUandveV}.
The code C has parameters |2n, k,, + k,, min{2d,,d,}|,. A generator matrix of C

IS.
Gu | Gu (ky+ky)X2n
(oe) e

where G, and G, are generator matrices of U and V' respectively.




(Soft) Decoding (U|U + V) codes

» We send (u|u + v), we receiv

» Step 1, decoding the V-code :

Prob(v(7) = a|y1(i), y2(i)) =

» Step 2: Yy, = Yy — v

» Step 3, decoding the U-code :

(two noisy versions of u : y,

Prob(u(i) = a | y1(3),y5(7)) =

informatiques #7mathématiques
za—

e (Y1,Ys)
decode y, — y; — v, probabilistic model :

Y Prob(u(i) = Blyi(i))Prob(u(i)+v(i) = a+plya(i)

Bel,
(1)
probabilistic model for decoding the U-code
and o/, & Yy — V)
Prob(u() 1(2))Prob(u(i) = a | y5(4))

—aly -
2_ger, Prob(u(i) = B | y1(2))Prob(u(i) = 5 | y5(7))
(2)
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Ingredient 1 : Arikan’s conservation law

» Model : symbol is transmitted correctly with probability and erased with
probability ». Channel capacity 1 — p

» Noise model for the V-decoder: erasure channel of probability 2p — p?
» Noise model for the U-decoder: erasure channel of probability p?

Nothing is lost in terms of capacity with this strategy

(1-2p+p*)+1-—p?
9

l—p=

» For other channels this also holds (Arikan conservation law of mutual
information)

lraa= 10/77



memoryless channel with input alphabet

Channel polarization

channel viewed by the V-decoder;

channel viewed by the U-decoder.

informatiques #7mathématiques
za—

Figure 1:

d:ef (Waoal...an_l)an

(UIU+V)

1% 0.4 U

w? w!
0.64 0.16

Example of an erasure channel with p = 0.4

and output alphabet

11/7?
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Example

W
0.4

12/77?



Example (I1)

0.4
0.64 0.16
0.8704 0.4096 0.2944 0.0256
0.983 0.757 0.651 0.168 0.502 0.087 0.051 0.0006
O O O o O O
0.9997 0.967 0.941 0.878 0.03 0.008 0.090.002 0.001 0.0000004

. 7 mathématiques
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>

codes = recursive (u|u + v) construction where all the leaves
are codes of length 1 (=symbols) and of rate 1 for the good channels and 0 for
the bad channels.

e 14/77



parameter

d:efﬁ Z Z\/W ylz)W (y|z’)

z,x'€Fy,x'#x yey

Theorem 1. [Sasoglu-Telatar-Arnkan] For a symmetric channel of capacity C
with q-ary inputs (q prime) and for all 0 < 3 < %

1 ¢ i — NP
Elgroloﬁ{ze{(),l}:Z(W><2 }‘:
where N d—ef2£
N1/2—e)

=> probability of error of a standard polar code 2_O<
the polar code. Follows from

where length of

P.<(¢g—1)Z (W)

e 15/77?



Changing a little bit the structure

> = recursive (u|u + v) construction where all leaves are symbols.

> = recursive (u|u + v) construction where all leaves are codes that
admit an efficient soft decoder.

» Our choice : Reed-Solomon codes with the Koetter Vardy decoder.



Definition 2. [Reed-Solomon code] Let x1,...,x, be n distinct elements in

F,. The code C associated to x1,...,x, of dimension k is the
n, k,d=mn—k+ 1], code defined by

C = {(P(xi)lgign : degP < k,P ~ Fq[X]}

A 17/77
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IG Codes

Irving and Gustave codes

informatiques #7mathématiques
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» Soft (list) decoder of a Reed-Solomon code based on the I1
associated to the received word y = (y1,...,yy,) after x = (z1,...,x,) has
been sent:

def
= (Prob(z; = a|y;)) acr,
1<g<sn

» decoding algorithm that outputs a list that contains the codeword ¢ € C' if

<H’LCJ>> k—1+o0(1)

(T,10) ~
where represents a ¢ X m matrix with entries ¢; , = 1 if ¢; = o, and 0
otherwise; and denotes the inner product of the two ¢ X n matrices A
and B, i.e.
q n
<A, B> d:ef Z Z CL@jb@j.
i=1 j=1

e 20/77



symbol sent through the channel
the received symbol

= (Prob(z = aly))aer,

Definition 3. [discrete symmetric channel with g-ary inputs] A DMC with q-
ary inputs is said to be symmetric if and only if for any o in ¥, we have

p(a)Prob(m = p) = p(0) Prob(m = p**). (3)

where p™* = (p(8 + a))ger,-

Lo 21/77



Analysis of the Koetter-Vardy decoder over symmetric

channels

We clearly have ,
E ((IL II)) = nkE s

Lemma 1. Over a symmetric channel

E ((IL, 0])) = nE|7|;

<H7 \_CD ~+/n 71'2 — O
™ VBl > VE= T4 0()

: informatique athématiques
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Analysis of the Koetter-Vardy decoder

of the Koetter-Vardy decoder for a certain symmetric channel
2
Ckv = E |3

For instance consider the g-ary symmetric channel of crossover probability p

p” 12 ’
m—(l p)” +

Cov= (1D + (g~ 1) —(1-p+0()

q—1

b= 23/77



Theorem 2. Let (C,),>1 be an infinite family of Reed-Solomon codes of rate
< R. Denote by q, the alphabet size of C,, that is assumed to be a non
decreasing sequence that goes to infinity with n. Consider an infinite family of
gn-ary symmetric channels with associated probability error vectors m, such that

E Hwan) has a limit as n tends to infinity. Let

Cxv & lim E (Hﬂan) .
n—oo
This infinite family of codes can be decoded correctly by the Koetter-Vardy
decoding algorithm with probability 1 — o(1) as n tends to infinity as soon as there
exists € > 0 such that

R < CK\/ — €.

Lo 24/77



Results up to 2 levels

Asymptotic result - g = infinity

R axis

—Guruswami-Sudan
—Decoding (U|U+V)
—Decoding (U|JU+V)-second level

0.8

0.6 -

0.4 -

! . . . ! . . . ! . . . ! M S paxis
0.2 0.4 0.6 0.8 1

:i ;;;;;;;;;;;; 7 mathématiques
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Results up to 3 levels

—Guruswami-Sudan
- (U.U+V)

—Second-Level
—Third-Level
0.8}
0.6
0.4}
0.2+

:i ;;;;;;;;;;;; 7 mathématiques
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Theorem 3. If we decode a Reed-Solomon code of length n and rate R <
E (Hw”%) over a symmetric channel with the Koetter-Vardy decoder, the probability
that it outputs in its list the right codeword is upper-bounded by

(’)(e_K52n)

for some constant K and where § = E <H7r”§> — R.

A 27/77



Finite length analysis (I1)
Proposition 1. For a symmetric channel
1 — CK\/< (q — 1)2 (W)

Follows rather directly from the well known fact that the Rényi entropy

def 1 o
= log Y " p(x)

1l -«

is decreasing in «.

Limia= 28/77



def

» / levels of polarization, leaves that are RS codes of maximal length ¢, n = 2t

» Assume that ¢ is prime.

For a symmetric channel of capacity C' and for all 0 < 3 < %

B

. 1 . 128 1 —n _
Jim —[{ie {01} 2(W) <27} = ¢
—
A 0|2 —nf
Jim =i e (0.1} E(|'];) 21— (a—-12™} = ©

» Take RS codes of rate 1 — € for those leaves.

» Take RS codes of rate O for the other leaves.

A 29/77



Polarization with RS leaves (Il)

» Non zero leaves are decoded wrongly with probability p = e~ K€" when
_nB 1
(g —1)2 < € say.

» Probability of failure for those leaves much better that if we had decoded
symbol leaves at level £ + log, (probability of order 27v4™).

» Overall rate of the code ~ C'(1 — ¢)

lraa= 30/77



Finite length performance

» Get rather close to the channel capacity even with only 4 levels for ¢ =
64, 128, 256 over the g-ary symmetric channel.

» Simulations : work in progress.

b= 31/77



Finite

0.8

0.6r

0.2

alphabet Koetter-Vardy capacities

Experimental Result for g=64

—Koetter-Vardy
—Decoding (U|U+V)
—Decoding (U|U+V)-second Level
Decoding (U|U+V)-third level
—Decoding (U|U+V)-fourth level
—Decoding (U|U+V)-fifth level
--Decoding (U|U+V)-sixth level
-Decoding (U|U+V)-seventh level

0.2

0.4

0.6 0.8 1

paxis
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Going further: algebraic geometry codes

» Problem with RS codes : length < q.

» Algebraic geometric codes : more or less the same behaviour as RS codes but
with an unbounded length and a fixed alphabet size.

» Allows to replace in the previous strategy ¢q by an arbitrary length N :

K2 S B
p=-e %N when (¢ —1)27" < ie

lisia— 33/77



Other strategies related to changing the kernel of polarization

» (UIU+V)—= UU+VIU+V +W)

» Improves the behaviour at the origin for the decoder.

: informatiques #”mathématiques
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» Polynomial complexity, but it amounts to solve a linear system with < gnm?

where m i1s the number unknowns...

2

o.; Where mq; ~ proportional to

» More precisely of order )
I, ;.

» Clearly better to perform this task over an iterated (u|w + v) construction
based on RS codes than on a RS code of the same length.

aEFq,jE{l,...,n}m

» Polarization process helps a lot to keep low multiplicities for the high rate parts
of the iterated (u|u + v) construction.

e 35,77



What kind of code is needed ?

The main ingredient: a family of codes of rate R = 1 — € with an efficient soft
decoder for any memoryless channel such that the probability that the decoder
fails is ,

O(e_K5 n)

for some constant K and where 0 = capacity of the channel — R.

b= 36/77



» Finite length behaviour over various channels by using only a few levels of the
iterated (u|w + v) construction.

» Studying various multiplicity choices for the Koetter-Vardy decoder.
» This strategy is of course not restricted to prime lengths.

» Gives in a natural way an exponential decay of the probability of error after
decoding with a fixed number of levels.

» Scaling of the error probability in terms of gap € to capacity ?

» Non negligible gain of (U|U +V|U+V + W) over (U|U+V) ?

» Study more precisely the error probabilities for algebraic geometry codes
» This strategy can be followed by using other decoders and/or other codes
>

Applications to rate distorstion codes also for instance.

e 37/17



