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Introduction Product Code Stopping Set Enumeration Performance

Motivation

Edge coloring of binary product codes (Boutros, Zémor, et al. 2008) but no
stopping sets analysis.

Social networks are using Reed-Solomon codes for storage.

We are not building codes for locality. We are only interested by rate and
performance. However, iterative row-column decoding of product codes is
simple enough.

We consider product codes with MDS components.
F. Jardel and J.J. Boutros, Edge Coloring and Stopping Sets Analysis in
Product Codes with MDS components, submitted to the IEEE Trans. Inf.
Theory, Dec. 2015. ArXiv 1603.01468.
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Definition: Product Code

See MacWilliams & Sloane 1977 and Kschischang 2003.

Column code C1: linear block code over Fq with parameters [n1, k1, d1]q.

Row code C2: linear block code with parameters [n2, k2, d2]q.

Let G1 and G2 be two generator matrices of size k1 × n1 and k2 × n2 for C1

and C2 respectively.

A product code CP is constructed as a subspace of FN
q with generator matrix

GP = G1 ⊗G2, where N = n1n2 and ⊗ denotes the Kronecker product.

CP has dimension K = k1k2 and minimum Hamming distance dP = d1d2.
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Definition: Product Code
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Definition: Product Code

n2

n1

C1[n1, k1, d1]

C2[n2, k2, d2]
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Decoders for Product Codes

Type I: ML decoder. This is a non-iterative decoder. It is based on a Gaussian
reduction of the parity-check matrix of the product code.

Type II: Iterative algebraic decoder. At odd decoding iterations, component
codes C1 on each column are decoded via an algebraic decoder
(bounded-distance) that fills up to d− 1 erasures. Similarly, at even decoding
iterations, component codes C2 on each row are decoded via an algebraic
decoder.

Type III: Iterative ML-per-component decoder. This decoder was considered
by E. Rosnes (2008) for binary product codes. At odd decoding iterations,
column codes C1 are decoded via an optimal decoder (ML for C1). At even
decoding iterations, row codes C2 are decoded via a similar optimal decoder
(ML for C2).

Type IV: Iterative belief-propagation decoder based on the Tanner graph of
CP as studied by Schwartz and Vardy (2006) for general linear block codes
and for low-density parity-check codes by Di, Proietti, Telatar, Richardson,
Urbanke (2002).
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The Rectangular Support

Useful later to characterize a stopping set in a row-column (bi-dimensional)
product code.

Let S ⊆ {1, . . . , n1} × {1, . . . , n2} be a set of symbol positions in the product
code.

The set of row positions associated to S is R1(S) = {i1, . . . , iℓ1} where
|R1(S)| = ℓ1 and for all i ∈ R1(S) there exists (i, ℓ) ∈ S.

The set of column positions associated to S is R2(S) = {j1, . . . , jℓ2} where
|R2(S)| = ℓ2 and for all j ∈ R2(S) there exists (ℓ, j) ∈ S.

The rectangular support of S is

R(S) = R1(S)×R2(S), (1)

i.e. the smallest ℓ1 × ℓ2 rectangle including all columns and all rows of S.
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Type-III Stopping Set

Definition

Consider a product code CP = C1 ⊗ C2. Let S ⊆ {1, . . . , n1} × {1, . . . , n2} with
|R1(S)| = ℓ1 and |R2(S)| = ℓ2. Consider the ℓ1 rows of S given by

S
(i)
r = {j : (i, j) ∈ S} and the ℓ2 columns of S given by S

(j)
c = {i : (i, j) ∈ S}.

The set S is a stopping set of type III for CP if there exist linear subcodes

C
(j)
c ⊆ C1 and C

(i)
r ⊆ C2 such that X (C

(j)
c ) = S

(j)
c and X (C

(i)
r ) = S

(i)
r for all

i ∈ R1(S) and for all j ∈ R2(S).
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Type-II Stopping Set

Definition

Consider a product code CP = C1 ⊗ C2. Let S ⊆ {1, . . . , n1} × {1, . . . , n2} with
|R1(S)| = ℓ1 and |R2(S)| = ℓ2. Consider the ℓ1 rows of S given by

S
(i)
r = {j : (i, j) ∈ S} and the ℓ2 columns of S given by S

(j)
c = {i : (i, j) ∈ S}.

The set S is a stopping set of type II for CP if |S
(i)
r | ≥ d2 and |S

(j)
c | ≥ d1, for all

i ∈ R1(S) and for all j ∈ R2(S).
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Basic Results for MDS codes (1)

Proposition

Let C[n, k, d]q be a linear code with q ≥ 2. Assume that C is not MDS and the n
symbols of a codeword are transmitted on an erasure channel. Then, there exists
an erasure pattern of weight greater than d− 1 that is ML-correctable.

Proof.

Let H be an (n− k)× n parity-check matrix of C with rank n− k > d− 1. For
any integer w in the range [d, n− k], there exists a set of w linearly independent
columns in H . Choose an erasure pattern of weight w with erasures located at the
positions of the w independent columns. Then, the ML decoder is capable of
solving all these erasures by simple Gaussian reduction of H .

Corollary

Let C[n, k, d]q be an MDS code. All erasure patterns of weight greater than d− 1
are not ML-correctable.
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Basic Results for MDS codes (2)

We conclude from the previous corollary that an algebraic decoder for an MDS
code attains the word-error performance of its ML decoder.

What about symbol-error performance?

Proposition

Let C[n, k, d]q be a non-binary MDS code (q > n > 2). For any w satisfying
d ≤ w ≤ n and any support X = {i1, i2, . . . , iw}, where 1 ≤ ij ≤ n, there exists a
codeword in C of weight w having X as its own support.
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Basic Results for MDS codes (2)

Proof.

Any set of n− k columns of H is full-rank (MDS code). w = n− k + ℓ = r + ℓ,
where ℓ = 1 . . . k. Name r independent columns of H as h1 . . . hr. The remaining
ℓ columns are denoted ζ1 . . . ζℓ. For any j = 1 . . . ℓ, we have ζj =

∑r

i=1 ai,jhi,
where ai,j ∈ Fq \ {0} otherwise it contradicts d = n− k + 1. Now, select α1 . . . αℓ

from Fq \ {0} such that: α1 is arbitrary, α2 is chosen outside the set
{−α1ai,1/ai,2}

r
i=1, then α3 is chosen outside the set

{(−α1ai,1 − α2ai,2)/ai,3}
r
i=1, and so on, up to αℓ which is chosen outside the set

{−
∑ℓ−1

u=1 αuai,u/ai,ℓ}
r
i=1. The equality

ℓ
∑

j=1

αjζj =

r
∑

i=1

ℓ
∑

j=1

αjai,jhi

produces a codeword of Hamming weight w. Hence, there exists a codeword of
weight w with non-zero symbols in all positions given by X .

F. Jardel and J.J. Boutros CohenFest at Telecom ParisTech (ENST) July 5, 2016 9 / 28



Introduction Product Code Stopping Set Enumeration Performance

Type-II and Type-III Stopping Sets are Identical for
MDS-Based Product Codes

Stopping sets are identical when dealing with algebraic and ML-per-component
decoders, i.e. type-II and type-III stopping sets are identical thanks to Corollary 3
and Proposition 2.

In the sequel, component codes C1 (column) and C2 (row) of a product code are
assumed to be MDS.
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Characterization of Stopping Sets

Stopping sets can be characterized as follows.

Obvious or not obvious sets, also known as rank-1 sets. A stopping set S is
obvious if S = R(S).

Primitive or non-primitive stopping sets. A stopping set is primitive if it cannot
be partitioned into two or more smaller stopping sets. Notice that all stopping
sets, whether they are primitive or not, are involved in the code performance.

Codeword or non-codeword. A stopping set S is said to be a codeword
stopping set if there exists a codeword c in CP such that X (c) = S.

ML-correctable or non-ML-correctable. A stopping set S cannot be corrected
via ML decoding if it includes the support of a non-zero codeword.
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Illustration: type-II stopping set with w = 9

Example

Consider a [n1, n1 − 2, 3]q ⊗ [n2, n2 − 2, 3]q product code. A stopping set S of size
w = 9 is shown as a weight-9 matrix of size n1 × n2, where 1 corresponds to an
erased position:

S =





















0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 1 0
0 0 0 0 0 0
0 1 0 1 1 0
0 1 0 1 1 0
0 0 0 0 0 0





















, R(S) =





1 1 1
1 1 1
1 1 1



 .

We took n1 = n2 = 7 for illustration.The rectangular support is shown in a
compact representation as a matrix of size ℓ1 × ℓ2 = 3× 3, This stopping set is
obvious. It is not ML-correctable because it is a product-code codeword.
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Illustration: type-II stopping set with w = 12

Example

Same [n1, n1 − 2, 3]q ⊗ [n2, n2 − 2, 3]q product code as in the previous example.

S1 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 0 1 0 0
0 0 0 0 0 0 0





















, S2 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 1 1 0 0
0 0 0 1 1 1 0
0 1 0 0 1 1 0
0 1 0 1 0 1 0
0 0 0 0 0 0 0





















.

S1 and S2 are not obvious. S1 is ML-correctable. S2 is not ML-correctable.

R(S1) = R(S2) =









1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1









. (2)

For w = 12, it is possible to build obvious stopping sets 3× 4 and 4× 3.
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The Rectangle Size and Number of Zeros

Lemma

Given a weight w ≤ (d1 +1)(d2 +1) and assuming τw > 0, then ∃S0 such that ∀S
with |S| = w, we have ‖R(S)‖ ≤ ‖R(S0)‖ = (ℓ01, ℓ

0
2), where

ℓ01 ≤ d1 + 1 +

⌊

d1 + 1

d2

⌋

, ℓ02 ≤ d2 + 1 +

⌊

d2 + 1

d1

⌋

.

Lemma

Let R(S) be the ℓ1 × ℓ2 rectangular support of a stopping set S of size w. Let
β = ℓ1ℓ2 − w be the number of zero positions, or equivalently β is the size of the
set R(S) \ S. Then

β ≤ min((ℓ1 − d1)ℓ2, ℓ1(ℓ2 − d2)).
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Stopping Sets and Bipartite Graphs

A stopping set of weight w and having a ℓ1 × ℓ2 rectangular support shall be
represented by a bipartite graph with ℓ1 left vertices, ℓ2 right vertices, and a total
of β = ℓ1ℓ2 − w edges.

Notice that these bipartite graphs have no length-2 cycles because parallel edges
are forbidden.

For finite ℓ1 and ℓ2, given the left degree distribution and the right degree
distribution, there exists no exact formula for counting bipartite graphs. The best
recent results are asymptotic in the graph size for sparse and dense matrices
(E.R. Canfield and B.D. McKay 2009, C. Greenhill and B.D. McKay 2012) and
cannot be applied in our enumeration.

The following two lemmas solve two cases encountered in our Theorem on
stopping sets enumeration for w = d(d+ 2) and w = (d+ 1)(d+ 1) both inside a
(d+ 2)× (d+ 2) rectangular support. The definition of special partitions is
required before introducing the two lemmas.
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Special Partitions

Definition

Let ℓ ≥ 2 be an integer. A special partition of length j of ℓ is a partition defined
by a tuple (ℓ1, ℓ2, . . . , ℓj) such that its integer components satisfy:

ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓj.
∑j

i=1 ℓi = ℓ.

ℓi ≥ 2, ∀j.

1 ≤ j ≤ ℓ/2.

A special partition shall be denoted by ((ℓ1, . . . , ℓj)).

Definition

The group number of a special partition, denoted by κ = κ(ℓ1, ℓ2, . . . , ℓj), is the
number of different integers ℓj , for j = 1 . . . ℓ/2. In other words, following set
theory, the set including the j integers ℓi’s is {ℓi1 , ℓi2 , . . . , ℓiκ}. The group number
divides the partition of ℓ into κ groups where the mth group includes ℓim
repeated gm times, and

∑κ

m=1 gm = j.
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Degree-2 Bipartite Graphs

Lemma

Consider bipartite graphs defined as follows: ℓ left vertices, ℓ right vertices, all
vertices have degree 2, and no length-2 cycles are allowed. For ℓ ≥ 2, the total
number xℓ of such bipartite graphs is given by the expression

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

∏ℓk−1
u=0 (ℓ −

∑k−1
i=1 ℓi − u)2

2ℓk
(3)

where
∑

((ℓ1,...,ℓj))
is a summation over all special partitions of the integer ℓ,

κ(ℓ1, . . . , ℓj) is the group number of the special partition ((ℓ1, . . . , ℓj)), and gm is
the size of the mth group.
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Degree-2 Bipartite Graphs

Proof. Firstly, let us find the number of Hamiltonian bipartite graphs having ℓk left
vertices, ℓk right vertices, all vertices of degree 2, and no length-2 cycles allowed.
This number is:

(ℓk!)
2

2ℓk
. (4)

Secondly, given the half-size ℓ of the bipartite graph stated in this lemma, all
special partitions of ℓ are considered. The number of choices for selecting the
vertices of the j Hamiltonian graphs is

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2

. (5)

The above number should be multiplied by the number of Hamiltonian graphs for
each selection of vertices to get

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
.
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Degree-2 Bipartite Graphs

But for a given special partition, each group of size gm is creating gm! identical
bipartite graphs. Hence, the final result for a fixed partition becomes

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
.

Then, xℓ is obtained by summing over all special partitions of the integer ℓ to yield

xℓ =
∑

((ℓ1,...,ℓj))

1
∏κ(ℓ1,...,ℓj)

m=1 gm!

j
∏

k=1

(

ℓ−
∑k−1

i=1 ℓi
ℓk

)2
(ℓk!)

2

2ℓk
.

The simplification of the factors (ℓk!)
2 yields the expression stated by this lemma.�
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Degree-2 Bipartite Graphs (One vertex of Degree 1)

Lemma

Consider bipartite graphs defined as follows: ℓ left vertices, ℓ right vertices, all left
vertices have degree 2 except one vertex of degree 1, all right vertices have degree
2 except one vertex of degree 1, and finally no length-2 cycles are allowed. For
ℓ ≥ 3, the total number yℓ of such bipartite graphs is

yℓ = ℓ2 ·
(

(2ℓ− 1) · xℓ−1 + (ℓ− 1)2 · xℓ−2

)

, (6)

where xℓ is determined via the previous lemma and x1 = 0.
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Degree-2 Bipartite Graphs (One vertex of Degree 1)

Proof. Let the first ℓ− 1 left vertices and the first ℓ− 1 right vertices be of degree
2. There exists two ways to complete this bipartite graph such that the two
remaining vertices have degree 1.
1) Each of the xℓ−1 sub-graphs has 2(ℓ− 1) edges. Break one edge into two edges
and connect them to the remaining left and right vertices, the number of such
graphs is 2(ℓ− 1)xℓ−1. Another set of xℓ−1 bipartite graphs is built by directly
connecting the last two vertices together without breaking any edge in the upper
sub-graph. Now, we find 2(ℓ− 1)xℓ−1 + xℓ−1 = (2ℓ− 1)xℓ−1 bipartite graphs.
2) Fix a vertex among the ℓ− 1 upper left vertices and fix one among the ℓ− 1
upper right vertices ((ℓ− 1)2 choices). Consider a length-2 cycle including these
two vertices. One edge of this cycle can be broken into two edges and then
attached to the degree-1 vertices at the bottom. The remaining ℓ− 2 left and
right vertices may involve xℓ−2 sub-graphs. Consequently, the number of graphs in
this second case is (ℓ − 1)2xℓ−2.
The total number of bipartite graphs enumerated in the above cases is

(2ℓ− 1)xℓ−1 + (ℓ− 1)2xℓ−2.

Finally, the degree-1 left vertex has ℓ choices and so has the degree-1 right vertex.
The number of graphs should be multiplied by ℓ2. �
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Tables of Special Partitions and Bipartite Graphs

The first table below shows the number of special partitions for ℓ = 2 . . . 32. The
number of standard partitions (the partition function) can be found by a recursion
resulting from the pentagonal number theorem. To our knowledge, there exists no
such recursion for special partitions. The number of bipartite graphs under the
assumptions of the previous lemmas is found in the second table for a graph
half-size up to 8.

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137,
165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507

ℓ 2 3 4 5 6 7 8

xℓ 1 6 90 2040 67950 3110940 187530840
yℓ 0 45 816 22650 888840 46882710 3199593600

Finally, we are ready to state and prove the first theorem on stopping sets
enumeration.
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Stopping Sets Enumeration (1)

Theorem: Let CP be a product code [n1, k1, d1]q ⊗ [n2, k2, d2]q built from row and
column MDS component codes, where the alphabet size q is greater than
max(n1, n2). Let τw be the number of stopping sets of size w. We write
τw = τa + τb, where τa counts obvious stopping sets and τb counts non-obvious
stopping sets. Under (type-II) iterative algebraic decoding and for
d1 = d2 = d ≥ 2, stopping sets are characterized as follows:

For w < d2, τa = τb = 0.

For w = d2, τa =
(

n1

d

)(

n2

d

)

and τb = 0.

For w ∈]d2, d(d+ 1)[, τa = τb = 0.

For w = d(d + 1),

τa =

(

n1

d

)(

n2

d+ 1

)

+

(

n1

d+ 1

)(

n2

d

)

, τb = (d+ 1)!

(

n1

d+ 1

)(

n2

d+ 1

)

.

For w ∈ ]d(d+ 1), d(d+ 2)[.
Let us write w = d2 + d+ λ, where λ ∈ [1, d− 1].

τa = 0, τb = (d+ 1− λ)!

(

d+ 1

λ

)2(
n1

d+ 1

)(

n2

d+ 1

)

.
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Stopping Sets Enumeration (2)

For w = d(d + 2),

τa =

(

n1

d

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d

)

,

τb = (d+ 1)2
(

n1

d+ 1

)(

n2

d+ 1

)

+
∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ xd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

where
∑

2r0+r1=d is a summation over r0 and r1, both being non-negative
and satisfying 2r0 + r1 = d, r2 = d+ 1− r0 − r1, and xd+2 is the number of
degree-2 bipartite graphs as given by the previous lemma.
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Stopping Sets Enumeration (3)

For w = (d+ 1)(d+ 1)

τa =

(

n1

d+ 1

)(

n2

d+ 1

)

,

τb =
∑

2r0+r1=d+1

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r0

[(

n1

d+ 1

)(

n2

d+ 2

)

+

(

n1

d+ 2

)(

n2

d+ 1

)]

+ yd+2

(

n1

d+ 2

)(

n2

d+ 2

)

,

where yd+2 is the number of degree-2 bipartite graphs, except for one left
vertex and one right vertex having degree 1. The number yd+2 is given by the
previous lemma.

The detailed proof of this Theorem is found in (Jardel and Boutros 2015, Th.2).
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Illustration: enumeration of stopping sets for w = 15

How to compute τw for w = 15 and d = 3?
Stopping set of size w = d(d+ 2).

d× (d+ 2) rectangular support corresponds to obvious sets τa.
τa =

(

n1

d

)(

n2

d+2

)

+
(

n1

d+2

)(

n2

d

)

.

Non-obvious sets counted by τb correspond to three different sizes of
rectangular support: (d+1)× (d+1), (d+1)× (d+2), and (d+2)× (d+2).









1 1 1 1 1
0 1 1 1 1
1 0 0 1 1
1 1 1 0 0

















0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0









(r0, r1) = (1, 1) (r0, r1) = (0, 3)

The number of 4× 5 matrices is given by:

∑

2r0+r1=d

(

d+ 1

r0

)(

d+ 1− r0
r1

)

(d+ 2)!

2r2
= 600.
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Performance with Independent Erasures (1)

Proposition

Let CP = C1 ⊗ C2 be a product code with non-binary MDS components. All
obvious stopping sets are supports of product code codewords.

Proof.

Consider an ℓ1 × ℓ2 obvious stopping set. Its rectangular support is
R(S) = R1(S)×R2(S). We have ℓ1 ≥ d1 and ℓ2 ≥ d2. There exists a column
codeword x = (x1, x2, . . . , xn1

) ∈ C1 of weight ℓ1 with support R1(S) × {j1},
where j1 ∈ R2(S). Similarly, there exists a row codeword
y = (y1, y2, . . . , yn2

) ∈ C2 of weight ℓ2 with support {i1} ×R2(S), where
i1 ∈ R1(S). The Kronecker product of x and y satisfies X (x ⊗ y) = S.
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Performance with Independent Erasures (2)

Corollary

Consider a product code CP = C1 ⊗ C2 with non-binary MDS component codes.
Assume the symbols of CP are transmitted over a SEC(q, ǫ) channel. Let PG

ew be
the word error probability of an iterative (type-II) decoder and PML

ew be the word
error probability of ML decoding. Then, for ǫ ≪ 1, the error probabilities satisfy
PG
ew ∼ PML

ew .
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Performance with Independent Erasures (2)

Proof.

On the SEC(q, ǫ), the word error probabilities are given by (Schwartz and Vardy
2006),

PML
ew =

N
∑

i=d1d2

Ψi(ML)ǫi(1− ǫ)N−i, (7)

where Ψi(ML) is the number of weight-i erasure patterns covering a product code
codeword, and

PG
ew =

N
∑

i=d1d2

Ψi(G)ǫ
i(1 − ǫ)N−i, (8)

where Ψi(G) is the number of weight-i erasure patterns covering a stopping set.
Asymptotic length analysis is not considered in this paper, i.e. N = n1n2 is fixed.
We write PML

ew = Ψd1d2
(ML)ǫd1d2 + o(ǫd1d2) and

PG
ew = Ψd1d2

(G)ǫd1d2 + o(ǫd1d2). From the previous proposition, we get the
equality Ψd1d2

(G) = Ψd1d2
(ML) and so limǫ→0 P

G
ew/P

ML
ew = 1.
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Performance with Independent Erasures (3)

For PG
ew , thanks to the enumeration Theorem, a union bound can be easily

established. Indeed, we have

PG
ew = Prob(∃S covered)

≤
∑

w

Prob(∃S : |S| = w,S covered),

leading to

PG
ew ≤ PU (ǫ) =

N
∑

w=d1d2

τwǫ
w. (9)

From the theorem, the union bound PU (ǫ) for the [12, 10, 3]⊗2
q product code is

PU (ǫ) =48400ǫ9 + 6098400ǫ12 + 23522400ǫ13 + 17641800ǫ14

+ 1754335440ǫ15+ 9126691200ǫ16 + o(ǫ16).
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Performance with Independent Erasures (4)
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Product code [12, 10]⊗2
q , no edge coloring. Word and symbol error rate

performance for iterative decoding versus its union bound and ML decoding.
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Finite-Length Regime: [14, 12]q ⊗ [16, 14]q product code

Finite-regime BEC bounds from Polyanskiy-Poor-Verdù (2010) are directly
applicable to our product codes over the SEC(q, ǫ). The BEC channel dispersion
is V = ǫ(1− ǫ) and its maximal achievable rate is

R = (1− ǫ)−

√

V

n
Q−1(Pew) +O(

1

n
), (10)

where n is the code length, Q(x) is the Gaussian tail function, ǫ is the channel
erasure probability, and Pew is the target word error probability. The next table
shows how good is the proposed product code based on MDS components. The
value of ǫ in the third column is given for Pew = 10−2 at all rows.

Coding Rate R Erasure Prob. ǫ
for ǫ = 0.15 for R = 0.75

Polyanskiy-Poor-Verdú 0.794 : Pew = 1.0 · 10−2 0.189
[14, 12]q ⊗ [16, 14]q 0.750 : Pew = 1.0 · 10−2 0.150
Regular-(3, 12) LDPC 0.750 : Pew = 2.9 · 10−2 0.135
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